Given two lists, write a program to find the minimum number of item insertions, item deletions, and item replacements to change one list into the other.

Here is the standard solution, which uses for-loops (Subsection 5.2.3), but for-loops are never necessary. We will change list A into list B. Let $D: ([#A+1] * ([#B+1] * nat])$ be an array-valued variable whose final value will be such that $D' i j = \text{(the edit distance from } A[0;..i] \text{ to } B[0;..j])$. So the final answer will be $D' (#A) (#B)$.

(0)
\[
 \text{for } i := 0;..#A+1 \text{ do } D i 0 := i \text{ od.}
\]

(1)
\[
 \text{for } j := 1;..#B+1 \text{ do } D 0 j := j \text{ od.}
\]

(2)
\[
 \text{for } i := 1;..#A+1 \text{ do}
 \]

(3)
\[
 \text{for } j := 1;..#B+1 \text{ do}
 \]

(4)
\[
 D i j := (D (i-1) (j-1) + \text{if } A i = B j \text{ then } 0 \text{ else } 1 \text{ fi})
 \]

(5)
\[
 (D (i-1) j + 1)
 \]

(6)
\[
 (D i (j-1) + 1) \text{ od od}
 \]

Line 0 says $A[0;..i]$ can be changed to $[\text{nil}]$ by i deletions.

Line 1 says $[\text{nil}]$ can be changed to $B[0;..j]$ by j insertions.

Lines 2 and 3 fill in the interior of D.

On line 4, if we can transform $A[0;..i-1]$ to $B[0;..j-1]$ in $D (i-1) (j-1)$ steps, and if $A i = B j$, we have transformed $A[0;..i]$ to $B[0;..j]$. But if $A i \neq B j$ then we need to replace $A i$ by $B j$ which takes 1 step.

On line 5, if we can transform $A[0;..i-1]$ to $B[0;..j]$ in $D (i-1) j$ steps, then we can transform $A[0;..i]$ to $B[0;..j]$ by deleting $A i$.

On line 6, if we can transform $A[0;..i]$ to $B[0;..j-1]$ in $D i (j-1)$ steps, then we can transform $A[0;..i]$ to $B[0;..j]$ by appending $B j$.

The shortest way to transform $A[0;..i]$ to $B[0;..j]$ is the minimum of the three ways from lines 4, 5, and 6.

To prove the correctness of this solution, find invariants for the for-loops. Or eliminate the for-loops and write specifications as in Chapter 4.