
262 (machine squaring)  Given a natural number, write a program to find its square using only 
addition, subtraction, doubling, halving, test for even, and test for zero, but not 
multiplication or division.

After trying the question, scroll down to the solution.



§ The question says we can double, but not multiply, so I'll take that to mean that we can 
multiply by  2  but not by anything else.  The question says we can halve, but not divide, 
so I'll take that to mean that we can divide by  2  but not by anything else.  This makes 
sense for “machine squaring” because, in machine language, multiplying by  2  is just 
shift left, and dividing by  2  is just shift right, and test for even just looks at the rightmost 
bit.

For a solution with linear time we could use
a2 = (a–1)2 + 2×a – 1

For a solution with logarithmic time, use 
if even a then a2 = 4×(a/2)2 else a2 = 4×((a–1)/2)2 + 2×a – 1 f

Let all variables be natural.
x:= a2   ⇐ if a=0 then x:= 0

else if even a then a:= a/2.  x:= a2.  a:= a×2.  x:= x×2×2
else a:= (a–1)/2.  x:= a2.  a:= a×2 + 1.  x:= x×2×2 + a×2 – 1 f f

Note that in the solution, the occurrences of  x:= a2  are recursive calls.  Note also that in 
the usual binary representation of natural numbers,  a×2  is just shift left, and both  a/2  
(for even  a ) and  (a–1)/2  (for odd  a ) are just shift right.  The refinement can be proven 
in  3  cases.  First case:

a=0 ∧ (x:= 0) expand assignment
= a=0 ∧ aʹ=a ∧ xʹ=0 context
= a=0 ∧ aʹ=a ∧ xʹ=a2 specialization
⇒ x:= a2

Middle case:
a>0 ∧ even a ∧ (a:= a/2.  x:= a2.  a:= a×2.  x:=x×2×2) expand final assignment

= a>0 ∧ even a ∧ (a:= a/2.  x:= a2.  a:= a×2.  aʹ=a ∧ xʹ=x×2×2) substitution law
= a>0 ∧ even a ∧ (a:= a/2.  x:= a2.  aʹ=a×2 ∧ xʹ=x×2×2) substitution law
= a>0 ∧ even a ∧ (a:= a/2.  aʹ=a×2 ∧ xʹ=a2×2×2) substitution law
= a>0 ∧ even a ∧ aʹ=a/2×2 ∧ xʹ=(a/2)2×2×2 arithmetic
= a>0 ∧ even a ∧ aʹ=a ∧ xʹ=a2 specialization
⇒ x:= a2

Last case:
odd a ∧ (a:= (a–1)/2.  x:= a2.  a:= a×2 + 1.  x:= x×2×2 + a×2 – 1)

expand final assignment
= odd a ∧ (a:= (a–1)/2.  x:= a2.  a:= a×2 + 1.  aʹ=a ∧ xʹ = x×4 + a×2 – 1)

substitution law
= odd a ∧ (a:= (a–1)/2.  x:= a2.  aʹ = a×2 + 1 ∧ xʹ = x×4 + (a×2 + 1)×2 – 1)

arithmetic
= odd a ∧ (a:= (a–1)/2.  x:= a2.  aʹ = a×2 + 1 ∧ xʹ = x×4 + a×4 + 1) substitution law
= odd a ∧ (a:= (a–1)/2.  aʹ = a×2 + 1 ∧ xʹ = (a2)×4 + a×4 + 1) substitution law
= odd a ∧ aʹ=a ∧ xʹ=a2 specialization
⇒ x:= a2

For the timing, replace  x:= a2  by  if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f , and put
t:= t+1  in front of the recursive calls.  The proof is by cases.  First,

if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f   ⇐   a=0 ∧ xʹ=x ∧ tʹ=t
= ⊤
The second case, right side, is

a⧧0 ∧ even a ∧ ( a:= a/2.  t:= t+1.
if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f.
a:= a×2.  x:= x×2×2)



= a⧧0 ∧ even a ∧ if a/2=0 then tʹ=t+1 else tʹ ≤ t + 2 + log (a/2) f
= a⧧0 ∧ even a ∧  tʹ ≤ t + 2 + log (a/2)
= a⧧0 ∧ even a ∧  tʹ ≤ t + 1 + log a
⇒ if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f
which is the left side.  The third case, right side, is

a⧧0 ∧ odd a ∧ ( a:= (a–1)/2.  t:= t+1.
if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f.
a:= a×2 + 1.  x:= x×2×2 + a×2 – 1)

= a⧧0 ∧ odd a ∧ if (a–1)/2=0 then tʹ=t+1 else tʹ ≤ t + 2 + log ((a–1)/2) f
= a⧧0 ∧ odd a ∧ if a=1 then tʹ=t+1 else tʹ ≤ t + 1 + log (a–1) f
⇒ if a=0 then tʹ=t else tʹ ≤ t + 1 + log a f
which is the left side.

Here's the best solution.  Define
P   =   yʹ = y + x×n  ∧  if x=0 then tʹ=t else tʹ ≤ t + log x f

Then the program is
yʹ=x2  ∧  if x=0 then tʹ=t else tʹ ≤ t + log x f   ⇐   y:= 0.  n:= x.  P
P   ⇐   if even x then even x ⇒ P else odd x ⇒ P f
even x ⇒ P   ⇐   if x=0 then ok else even x ∧ x>0 ⇒ P f
odd x ⇒ P   ⇐   y:= y+n.  x:= x–1.  even x ⇒ P
even x ∧ x>0 ⇒ P   ⇐   n:= 2×n.  x:= x/2.  t:= t+1.  x>0 ⇒ P
x>0 ⇒ P   ⇐   if even x then even x ∧ x>0 ⇒ P else odd x ⇒ P f


