(Ackermann) Function \(\text{ack} \) of two natural variables is defined as follows.

\[
\begin{align*}
\text{ack} \ 0 \ 0 &= 2 \\
\text{ack} \ 1 \ 0 &= 0 \\
\text{ack} \ (m+2) \ 0 &= 1 \\
\text{ack} \ 0 \ (n+1) &= \text{ack} \ 0 \ n + 1 \\
\text{ack} \ (m+1) \ (n+1) &= \text{ack} \ m \ (\text{ack} \ (m+1) \ n)
\end{align*}
\]

(a) Suppose that functions and function application are not implemented expressions; in that case \(n := \text{ack} \ m \ n \) is not a program. Refine \(n := \text{ack} \ m \ n \) to obtain a program.

\[
\begin{align*}
n &= \text{ack} \ m \ n \iff \\
&\quad \text{if } m = n = 0 \text{ then } n := 2 \\
&\quad \text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
&\quad \text{else if } n = 0 \text{ then } n := 1 \\
&\quad \text{else if } m = 0 \text{ then } n := n - 1. \quad n := \text{ack} \ m \ n. \quad n := n + 1 \\
&\quad \text{else } n := n - 1. \quad n := \text{ack} \ m \ n. \quad m := m - 1. \quad n := \text{ack} \ m \ n. \quad m := m + 1
\end{align*}
\]

Here are the first few values of this function.

<table>
<thead>
<tr>
<th>(m)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>2+n</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>65536</td>
<td>*</td>
</tr>
</tbody>
</table>

The entry marked * has about 20000 digits in it, and tower \(n \) means “two to the power two to the power two to the power ...” with \(n \) “two”s. Here is another way to create the table. The top row is 2 3 4 5 and so on; the left column is 2 0 1 1 1 1 and so on; to find an interior item, look left one place, and that's the column number, one row up, to copy from. Just copying; no arithmetic. For example, suppose we want to determine the value of \(\text{ack} \ 3 \ 3 \). Look to the left of position 3 3 and you see 4. So look in the previous row (row 2) under column 4, and you see 16. So \(\text{ack} \ 3 \ 3 = 16 \).

(b) Find a time bound. Hint: you may use function \(\text{ack} \) in your time bound.

\[
\begin{align*}
t' &\leq t + fm n \land n' = \text{ack} \ m \ n \land m'=m \iff \\
&\quad \text{if } m = n = 0 \text{ then } n := 2 \\
&\quad \text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
&\quad \text{else if } n = 0 \text{ then } n := 1 \\
&\quad \text{else if } m = 0 \text{ then } \\
&\quad \quad \text{then } n := n - 1. \quad t := t + 1. \quad t' \leq t + fm n \land n' = \text{ack} \ m \ n \land m'=m. \quad n := n + 1 \\
&\quad \quad \text{else } n := n - 1. \quad t := t + 1. \quad t' \leq t + fm n \land n' = \text{ack} \ m \ n \land m'=m. \quad m := m - 1. \quad t' \leq t + fm n \land n' = \text{ack} \ m \ n \land m'=m. \quad m := m + 1
\end{align*}
\]

In the last alternative, I put \(t := t + 1 \) before the first recursive call, but not before the second. The one occurrence ensures that every loop includes a time increment. But I could have put another one in. Using Refinement by Cases, and throwing away the unnecessary pieces, we need \(f \) to satisfy five things.

\[
\begin{align*}
t' &\leq t + fm n \iff m = n = 0 \land t = t \\
t' &\leq t + fm n \iff m = 1 \land n = 0 \land t = t \\
t' &\leq t + fm n \iff m > 1 \land n = 0 \land t = t \\
t' &\leq t + fm n \iff m = 0 \land n > 0 \land t' \leq t + 1 + fm \ (n-1)
\end{align*}
\]
\[t' \leq t + f m n \iff m \geq 0 \land n \geq 0 \land t' \leq t + 1 + f m (n-1) + f (m-1) (ack m (n-1)) \]

Simplifying,
\[
\begin{align*}
 f_0 0 & \geq 0 \\
 f 0 (n+1) & \geq f 0 n + 1 \\
 f (m+1) (n+1) & \geq f (m+1) n + f m (ack (m+1) n) + 1
\end{align*}
\]

These are the constraints on \(f \). So replace \(\geq \) by \(= \) and we have a definition of \(f \) that gives the exact execution time (in terms of \(\text{ack} \)).

(c) Find a space bound.