Let \(n \) be a natural variable. Add time according to the recursive measure, and find a finite upper bound on the execution time of

\[
P \iff \text{if } n \geq 2 \text{ then } n := n - 2. \quad P. \quad n := n + 1. \quad P. \quad n := n + 1 \text{ else } \text{ok fi}
\]

To ensure that every loop includes a time increment, it is sufficient to put \(t := t + 1 \) just before the first call. (But the question isn't any harder, and the time bound isn't significantly different, if we put \(t := t + 1 \) before both calls.) Because of the two calls, each at approximately the original value of \(n \), I guess the time might be exponential. Actually, it looks just like Fibonacci: the first call is at \(n - 2 \), the second is at \(n - 1 \). Let's try

\[
P = t' \leq t + 2^n
\]

The proof of the refinement will be by cases. First case:

\[
\begin{align*}
& n \geq 2 \land (n := n - 2. \quad t := t + 1. \quad P. \quad n := n + 1. \quad P. \quad n := n + 1) \\
\Rightarrow & n \geq 2 \land (t' \leq t + 1 + 2^{n-2}. \quad t' \leq t + 2^{n+1}. \quad n' = n + 1 \land t' = t) \\
\Rightarrow & n \geq 2 \land \exists n'', t', n''', t'''. \quad t'' \leq t + 1 + 2^{n-2} \land t''' \leq t'' + 2^{n''} + n' = n''' + 1 \land t' = t'''
\Rightarrow & n \geq 2
\end{align*}
\]

Oops. The final time seems to be completely arbitrary. The problem is that the first call of \(P \) allows \(n \) to change arbitrarily, so the last call of \(P \) allows \(t \) to change arbitrarily. Let's try again.

\[
P = n' = n \land t' \leq t + 2^n
\]

The proof of the refinement will be by cases. First case:

\[
\begin{align*}
& n \geq 2 \land (n := n - 2. \quad t := t + 1. \quad P. \quad n := n + 1. \quad P. \quad n := n + 1) \\
\Rightarrow & n \geq 2 \land n' = n \land t' \leq t + 1 + 2^{n-2} + 2^{n-1} \\
\Rightarrow & n \geq 2 \land n' = n \land t' \leq t + 1 + 3 \times 2^{n-2} \quad \text{when } n \geq 2, 1 \leq 2^{n-2} \\
\Rightarrow & n' = n \land t' \leq t + 2^{n} \quad \text{specialize and simplify}
\end{align*}
\]

Last case:

\[
\begin{align*}
& n < 2 \land \text{ok} \\
\Rightarrow & n < 2 \land n' = n \land t' = t \\
\Rightarrow & n' = n \land t' \leq t + 2^n \quad \text{and } 0 \leq 2^n
\end{align*}
\]