Function \(\text{ack}\) of two natural variables is defined as follows.

\[
\begin{align*}
\text{ack} 0 0 &= 2 \\
\text{ack} 1 0 &= 0 \\
\text{ack} (m+2) 0 &= 1 \\
\text{ack} 0 (n+1) &= \text{ack} 0 n + 1 \\
\text{ack} (m+1) (n+1) &= \text{ack} m (\text{ack} (m+1) n)
\end{align*}
\]

(a) Suppose that functions and function application are not implemented expressions; in that case \(n := \text{ack} m n\) is not a program. Refine \(n := \text{ack} m n\) to obtain a program.

\[
\begin{align*}
n := \text{ack} m n & \iff \\
& \quad \text{if } m = n = 0 \text{ then } n := 2 \\
& \quad \text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
& \quad \quad \text{else if } n = 0 \text{ then } n := 1 \\
& \quad \quad \quad \text{else if } m = 0 \text{ then } n := n - 1. \\
& \quad \quad \quad \quad \text{else } n := n - 1. \\
& \quad \quad \quad \quad \quad n := \text{ack} m n. \\
& \quad \quad \quad \quad \quad m := m-1. \\
& \quad \quad \quad \quad \quad n := n + 1
\end{align*}
\]

Here are the first few values of this function.

\[
\begin{array}{cccccccc}
m= & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 2+n \\
1 & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 2\times n \\
2 & 1 & 2 & 4 & 8 & 16 & 32 & 64 & 2^n \\
3 & 1 & 2 & 4 & 16 & 65536 & * & tower n
\end{array}
\]

The entry marked * has about 20000 digits in it, and \(\text{tower } n\) means “two to the power two to the power two to the power ...” with \(n\) “two”s. Here is another way to create the table. The top row is 2 3 4 5 and so on; the left column is 2 0 1 1 1 and so on; to find an interior item, look left one place, and that's the column number, one row up, to copy from. Just copying; no arithmetic. For example, suppose we want to determine the value of \(\text{ack} 3 3\). Look to the left of position 3 3 and you see 4. So look in the previous row (row 2) under column 4, and you see 16. So \(\text{ack} 3 3 = 16\).

(b) Find a time bound. Hint: you may use function \(\text{ack}\) in your time bound.

\[
\begin{align*}
t' & \leq t + f m n \land n' = \text{ack} m n \land m'=m \iff \\
& \quad \text{if } m = n = 0 \text{ then } n := 2 \\
& \quad \text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
& \quad \quad \text{else if } n = 0 \text{ then } n := 1 \\
& \quad \quad \quad \text{else if } m = 0 \text{ then } n := n - 1. \\
& \quad \quad \quad \quad \text{else } n := n - 1. \\
& \quad \quad \quad \quad \quad n := \text{ack} m n. \\
& \quad \quad \quad \quad \quad m := m-1. \\
& \quad \quad \quad \quad \quad n := n + 1
\end{align*}
\]

In the last alternative, I put \(t := t+1\) before the first recursive call, but not before the second. The one occurrence ensures that every loop includes a time increment. But I could have put another one in. Using Refinement by Cases, and throwing away the unnecessary pieces, we need \(f\) to satisfy five things.

\[
\begin{align*}
t' & \leq t + f m n \iff m = n = 0 \land t'=t \\
t' & \leq t + f m n \iff m = 1 \land n = 0 \land t'=t \\
t' & \leq t + f m n \iff m > 1 \land n = 0 \land t'=t \\
t' & \leq t + f m n \iff m = 0 \land n > 0 \land t' \leq t + 1 + f m (n-1)
\end{align*}
\]
\[t' \leq t + fm \iff m \geq 0 \land n \geq 0 \land t' \leq t + 1 + fm(n-1) + f(m-1)(ack m(n-1)) \]

Simplifying,

\begin{align*}
fm(0) &\geq 0 \\
fm(0)(n+1) &\geq fm(n) + 1 \\
fm(m+1)(n+1) &\geq f(m+1)n + fm(ack(m+1)n) + 1
\end{align*}

These are the constraints on \(f \). So replace \(\geq \) by \(= \) and we have a definition of \(f \) that gives the exact execution time (in terms of \(ack \)).

(c) Find a space bound.