(Ackermann) Function \(\text{ack} \) of two natural variables is defined as follows.

\[
\begin{align*}
\text{ack} \ 0 \ 0 &= 2 \\
\text{ack} \ 1 \ 0 &= 0 \\
\text{ack} \ (m+2) \ 0 &= 1 \\
\text{ack} \ 0 \ (n+1) &= \text{ack} \ 0 \ n + 1 \\
\text{ack} \ (m+1) \ (n+1) &= \text{ack} \ m \ (\text{ack} \ (m+1) \ n)
\end{align*}
\]

(a) Suppose that functions and function application are not implemented expressions; in that case \(n := \text{ack} \ m \ n \) is not a program. Refine \(n := \text{ack} \ m \ n \) to obtain a program.

\[
\begin{align*}
\text{refine } n := \text{ack} \ m \ n &
\leftarrow
\text{if } m = n = 0 \text{ then } n := 2 \\
\text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
\text{else if } n = 0 \text{ then } n := 1 \\
\text{else if } m = 0 \text{ then } n := n - 1. \ n := \text{ack} \ m \ n. \ n := n + 1 \\
\text{else } n := n - 1. \ n := \text{ack} \ m \ n. \ m := m - 1. \ n := \text{ack} \ m \ n. \ m := m + 1
\end{align*}
\]

Here are the first few values of this function.

\[
\begin{array}{cccccccc}
\hline
m & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \ \\
& 0 & 2 & 4 & 6 & 8 & 10 & 12 \ \\
& 1 & 2 & 4 & 8 & 16 & 32 & 64 \ \\
& 3 & 1 & 2 & 4 & 16 & 65536 & * \ \\
\hline
\end{array}
\]

The entry marked * has about 20000 digits in it, and \(\text{tower } n \) means “two to the power two to the power ...” with \(n \) “two”s. Here is another way to create the table. The top row is 2 3 4 5 etc.; the left column is 2 0 1 1 1 etc; to find an interior item, look left one place, and that’s the column number, one row up, to copy from. Just copying; no arithmetic.

(b) Find a time bound. Hint: you may use function \(\text{ack} \) in your time bound.

\[
\begin{align*}
\text{refine } t' \leq t + f \ m \ n \land n' = \text{ack} \ m \ n \land m' = m &
\leftarrow
\text{if } m = n = 0 \text{ then } n := 2 \\
\text{else if } m = 1 \land n = 0 \text{ then } n := 0 \\
\text{else if } n = 0 \text{ then } n := 1 \\
\text{else if } m = 0 \\
\text{then } n := n - 1. \ t := t + 1. \ t' \leq t + f \ m \ n \land n' = \text{ack} \ m \ n \land m' = m. \\
n := n + 1 \\
\text{else } n := n - 1. \ t := t + 1. \ t' \leq t + f \ m \ n \land n' = \text{ack} \ m \ n \land m' = m. \\
m := m - 1. \ t' \leq t + f \ m \ n \land n' = \text{ack} \ m \ n \land m' = m. \ m := m + 1
\end{align*}
\]

In the last alternative, I put \(t := t + 1 \) before the first recursive call, but not before the second. The one occurrence ensures that every loop includes a time increment. But I could have put another one in. Using Refinement by Cases, and throwing away the unnecessary pieces, we need \(f \) to satisfy five things.

\[
\begin{align*}
t' \leq t + f \ m \ n &\leftarrow m = n = 0 \land t' = t \\
t' \leq t + f \ m \ n &\leftarrow m = 1 \land n = 0 \land t' = t \\
t' \leq t + f \ m \ n &\leftarrow m > 1 \land n = 0 \land t' = t \\
t' \leq t + f \ m \ n &\leftarrow m = 0 \land n > 0 \land t' \leq t + 1 + f \ m \ (n - 1) \\
t' \leq t + f \ m \ n &\leftarrow m > 0 \land n > 0 \land t' \leq t + 1 + f \ m \ (n - 1) + f (m - 1) \ (\text{ack} \ m \ (n - 1))
\end{align*}
\]

Simplifying,

\[
f \ m \ 0 \geq 0
\]
\[f^0(n+1) \geq f^0 n + 1 \]
\[f^{(m+1)}(n+1) \geq f^{(m+1)} n + f^m(ack^{(m+1)} n) + 1 \]

These are the constraints on \(f \). So replace \(\geq \) by \(= \) and we have a definition of \(f \) that gives the exact execution time (in terms of \(ack \)).

(c) Find a space bound.