
245 (parity check) Write a program to find whether the number of ones in the binary
representation of a given natural number is even or odd.

After trying the question, scroll down to the solution.

§ Let the given natural number be the initial value of natural variable n , and report the
answer as the final value of binary variable p . Define

R = pʹ = even (Σi: nat· mod (div n 2i) 2)
Q = pʹ = (p = even (Σi: nat· mod (div n 2i) 2))

Then the refinements are
R ⇐ p:= ⊤. Q
Q ⇐ if n=0 then ok else p:= p = even n. n:= div n 2. Q f

The proof of the first refinement is one use of the Substitution Law.
The last refinement can be proven by cases. The first case is

pʹ = (p = even (Σi: nat· mod (div n 2i) 2)) ⇐ n=0 ∧ ok expand ok
= pʹ = (p = even (Σi: nat· mod (div n 2i) 2)) ⇐ n=0 ∧ pʹ=p ∧ nʹ=n context
= p = (p = even (Σi: nat· mod (div 0 2i) 2)) ⇐ n=0 ∧ pʹ=p ∧ nʹ=n simplify
= p = (p = ⊤) ⇐ n=0 ∧ pʹ=p ∧ nʹ=n identity
= p = p ⇐ n=0 ∧ pʹ=p ∧ nʹ=n = is reflexive
= ⊤ ⇐ n=0 ∧ pʹ=p ∧ nʹ=n base
= ⊤
Just before doing the last case, here is a piece of arithmetic.

div (div n 2i) 2j = div n 2i+j

because chopping off i bits from the right end of a binary number followed by chopping
off j more bits is the same as chopping off i+j bits.
The last refinement, last case, is

 pʹ = (p = even (Σi: nat· mod (div n 2i) 2))
⇐ n>0 ∧ (p:= p = even n. n:= div n 2. Q) expand Q , two substitutions

= pʹ = (p = even (Σi: nat· mod (div n 2i) 2))
⇐ n>0 ∧ pʹ = ((p = even n) = even (Σi: nat· mod (div (div n 2) 2i) 2))

use the piece of arithmetic; also, drop n>0 (we won't need it)
⇐ pʹ = (p = even (Σi: nat· mod (div n 2i) 2))

⇐ pʹ = ((p = even n) = even (Σi: nat· mod (div n 2i+1) 2))
binary = is associative

= (pʹ=p) = even (Σi: nat· mod (div n 2i) 2)
⇐ (pʹ=p) = (even n = even (Σi: nat· mod (div n 2i+1) 2)) transparency

= even (Σi: nat· mod (div n (2i)) 2) = (even n = even (Σi: nat· mod (div n 2i+1) 2))
binary = is associative and symmetric

= even n = (even (Σi: nat· mod (div n 2i) 2) = even (Σi: nat· mod (div n 2i+1) 2))
in the first sum, separate out i=0

= even n = (even (mod n 2 + Σi: nat· mod (div n 2i+1) 2
 = even (Σi: nat· mod (div n 2i+1) 2))

If n is even, mod n 2 = 0 . If n is odd, mod n 2 = 1 ,
changing the evenness of the upper sum.

= ⊤
Now for the timing. Define

T = if n=0 then tʹ=t else tʹ ≤ t + log n f
Then the refinements are

T ⇐ p:= ⊤. T
T ⇐ if n=0 then ok else p:= p = even n. n:= div n 2. t:= t+1. T f

The proof of the first refinement is one trivial use of the Substitution Law. The second
refinement is proven by cases. The first case is:

T ⇐ n=0 ∧ ok expand T and ok
= if n=0 then tʹ=t else tʹ ≤ t + log n f ⇐ n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t context
= if 0=0 then t=t else t ≤ t + log 0 f ⇐ n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t simplify
= ⊤ ⇐ n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t base
= ⊤

The other case is
T ⇐ n>0 ∧ (p:= p = even n. n:= div n 2. t:= t+1. T) expand T and substitute

= if n=0 then tʹ=t else tʹ ≤ t + log n f
⇐ n>0 ∧ if div n 2 = 0 then tʹ=t+1else tʹ ≤ t+1 + log (div n 2) f

use n>0 as context
= tʹ ≤ t + log n ⇐ n>0 ∧ if n=1 then tʹ=t+1else tʹ ≤ t+1 + log (div n 2) f

increase div n 2 to n/2
⇐ tʹ ≤ t + log n ⇐ n>0 ∧ if n=1 then tʹ=t+1else tʹ ≤ t+1 + log (n/2) f

use context n=1 in then part, and log law in else part
= tʹ ≤ t + log n ⇐ n>0 ∧ if n=1 then tʹ=t + log n else tʹ ≤ t + log n f

case idempotent and specialize
= ⊤

