245  (parity check) Write a program to find whether the number of ones in the binary
representation of a given natural number is even or odd.

After trying the question, scroll down to the solution.



Let the given natural number be the initial value of natural variable n , and report the
answer as the final value of binary variable p . Define
R = p'=even (Zi: nat mod (div n 27) 2)
QO = p' =(p=even (Zi: nat mod (div n 2V) 2))
Then the refinements are
R < p=T7.0
Q <= ifn=0thenokelse p:=p=evenn. n:=divn?2. Qfi
The proof of the first refinement is one use of the Substitution Law.
The last refinement can be proven by cases. The first case is

p' = (p = even (Zi: nat- mod (div n 2i) 2)) < n=0 A ok expand ok
= p' = (p =even (Zi: nat mod (div n 2) 2)) < n=0 A p'=p A n'=n context
= p = (p = even (Zi: nat mod (div 0 21) 2)) < n=0 A p'=p A n'=n simplify
= p=(@=T) <« n=0Ap'=pAn'=n identity
= p=p < n=0Ap'=pAn=n = is reflexive
= T <= n=0Ap'=pAn'=n base
- T

Just before doing the last case, here is a piece of arithmetic.
div(divn2)2 = divn?2H
because chopping off i bits from the right end of a binary number followed by chopping
off j more bits is the same as chopping off i+j bits.
The last refinement, last case, is
p' = (p = even (Zi: nat- mod (div n 2i) 2))
= n>0A(p:=p=evenn. ni=divn2. Q) expand Q , two substitutions
p' = (p = even (Zi: nat mod (div n 2%) 2))
< n>0 A p' =((p = even n) = even (Zi: nat- mod (div (div n 2) 2) 2))
use the piece of arithmetic; also, drop n>0 (we won't need it)
< p' = (p = even (Zi: nat mod (div n 2%) 2))
< p' =((p = even n) = even (Zi: nat- mod (div n 2i+1) 2))
binary = is associative

(p'=p) = even (Zi: nat- mod (div n 2%) 2)
< (p'=p) = (even n = even (Zi: nat- mod (div n 2i+1) 2)) transparency
= even (Zi: nat- mod (div n (2Y)) 2) = (even n = even (Zi: nat- mod (div n 2i+1) 2))
binary = is associative and symmetric
= even n = (even (Zi: nat- mod (div n 2%) 2) = even (Zi: nat- mod (div n 2i+1) 2))
in the first sum, separate out =0
= evenn = ( even (modn?2 + Xi: nat mod (div n 2i+1) 2
= even (Zi: nat- mod (div n 2+1) 2) )
If n iseven, modn2 = 0. If n isodd, modn2 =1,
changing the evenness of the upper sum.
- T
Now for the timing. Define
= ifn=0then r'=telset <+ lognfi
Then the refinements are
T < p=T7.T
T <= ifn=0thenokelse p:=p=cvenn. ni=divn2. t.=t+1. THhi
The proof of the first refinement is one trivial use of the Substitution Law. The second
refinement is proven by cases. The first case is:

T <= n=0n ok expand T and ok
= if =0 thenr'=relset <t+lognfi < n=0An'=nnap'=pnat=t context
= if 0=0 then r=telser<t+log0fi <= n=0An'=nAp'=pnat=t simplify
= T <= n=0An'=nnAp'=pat=t base

T



The other case is
T <= m>0nA((p:=p=evenn. n:=divn2. t=t+1. T) expand T and substitute
if n=0 then r'=relset <t + log nfi
<= n>0 A ifdivn2 =0 then t'=r+lelse t' <t+1 + log (divn 2) fi
use n>0 as context
' <t+logn < n>0 A if n=1 then f'=t+lelse ¢ <t+1 + log (divn 2) fi
increase divn?2 to n/2
<< (' =<t+logn <= n>0 A ifn=1 then r'=r+lelse t' <r+1 + log (n/2) fi
use context n=1 in then part,and log law in else part
' <t+logn <= n>0 A ifn=1thent=r+lognelset <t+lognfi
case idempotent and specialize

T



