
245 (parity check)  Write a program to find whether the number of ones in the binary 
representation of a given natural number is even or odd.

After trying the question, scroll down to the solution.



§ Let the given natural number be the initial value of natural variable  n , and report the 
answer as the final value of binary variable  p .  Define

R   =   pʹ = even (Σi: nat· mod (div n 2i) 2)
Q   =   pʹ = (p = even (Σi: nat· mod (div n 2i) 2))

Then the refinements are
R   ⇐   p:= ⊤.  Q
Q   ⇐   if n=0 then ok else p:= p = even n.  n:= div n 2.  Q f

The proof of the first refinement is one use of the Substitution Law.
The last refinement can be proven by cases.  The first case is

pʹ = (p = even (Σi: nat· mod (div n 2i) 2))   ⇐   n=0 ∧ ok expand  ok
= pʹ = (p = even (Σi: nat· mod (div n 2i) 2))   ⇐   n=0 ∧ pʹ=p ∧ nʹ=n context
= p = (p = even (Σi: nat· mod (div 0 2i) 2))   ⇐   n=0 ∧ pʹ=p ∧ nʹ=n simplify
= p = (p = ⊤)   ⇐   n=0 ∧ pʹ=p ∧ nʹ=n identity
= p = p   ⇐   n=0 ∧ pʹ=p ∧ nʹ=n =  is reflexive
= ⊤   ⇐   n=0 ∧ pʹ=p ∧ nʹ=n base
= ⊤
Just before doing the last case, here is a piece of arithmetic.

div (div n 2i) 2j   =   div n 2i+j

because chopping off  i  bits from the right end of a binary number followed by chopping 
off  j  more bits is the same as chopping off  i+j  bits.
The last refinement, last case, is

       pʹ = (p = even (Σi: nat· mod (div n 2i) 2))
⇐   n>0 ∧ (p:= p = even n.  n:= div n 2.  Q) expand  Q , two substitutions

=        pʹ = (p = even (Σi: nat· mod (div n 2i) 2))
⇐   n>0 ∧ pʹ = ((p = even n) = even (Σi: nat· mod (div (div n 2) 2i) 2))

use the piece of arithmetic;  also, drop  n>0  (we won't need it)
⇐        pʹ = (p = even (Σi: nat· mod (div n 2i) 2))

⇐   pʹ = ((p = even n) = even (Σi: nat· mod (div n 2i+1) 2))
binary   =  is associative

=        (pʹ=p) = even (Σi: nat· mod (div n 2i) 2)
⇐   (pʹ=p) = (even n = even (Σi: nat· mod (div n 2i+1) 2)) transparency

= even (Σi: nat· mod (div n (2i)) 2) = (even n = even (Σi: nat· mod (div n 2i+1) 2))
binary  =  is associative and symmetric

= even n = (even (Σi: nat· mod (div n 2i) 2) = even (Σi: nat· mod (div n 2i+1) 2))
in the first sum, separate out  i=0

= even n  =  (   even (mod n 2  +  Σi: nat· mod (div n 2i+1) 2
                =  even (Σi: nat· mod (div n 2i+1) 2)                   )

If  n  is even,  mod n 2  =  0 .  If  n  is odd,  mod n 2  =  1 ,
changing the evenness of the upper sum.

= ⊤
Now for the timing.  Define

T   =   if n=0 then tʹ=t else tʹ ≤ t + log n f
Then the refinements are

T   ⇐   p:= ⊤.  T
T   ⇐   if n=0 then ok else p:= p = even n.  n:= div n 2.  t:= t+1.  T f

The proof of the first refinement is one trivial use of the Substitution Law.  The second 
refinement is proven by cases.  The first case is:

T   ⇐   n=0 ∧ ok expand  T  and  ok
= if n=0 then tʹ=t else tʹ ≤ t + log n f   ⇐   n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t context
= if 0=0 then t=t else t ≤ t + log 0 f   ⇐   n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t simplify
= ⊤   ⇐   n=0 ∧ nʹ=n ∧ pʹ=p ∧ tʹ=t base
= ⊤



The other case is
T   ⇐   n>0 ∧ (p:= p = even n.  n:= div n 2.  t:= t+1.  T) expand  T  and substitute

=       if n=0 then tʹ=t else tʹ ≤ t + log n f
⇐   n>0 ∧ if div n 2 = 0 then tʹ=t+1else tʹ ≤ t+1 + log (div n 2) f

use  n>0  as context
= tʹ ≤ t + log n   ⇐   n>0  ∧  if n=1 then tʹ=t+1else tʹ ≤ t+1 + log (div n 2) f

increase  div n 2  to  n/2
⇐ tʹ ≤ t + log n   ⇐   n>0  ∧  if n=1 then tʹ=t+1else tʹ ≤ t+1 + log (n/2) f

use context   n=1  in  then  part, and  log  law in  else  part
= tʹ ≤ t + log n   ⇐   n>0  ∧  if n=1 then tʹ=t + log n else tʹ ≤ t + log n f

case idempotent and specialize
= ⊤


