A relation $R: (0,..n) \rightarrow (0,..n)$ can be represented by a square binary array of size n. Given a relation in the form of a square binary array, write a program to find

(a) its transitive closure (the strongest transitive relation that is implied by the given relation).

Let P_{ijk} mean “there is a path in R from j to k via zero or more intermediate nodes all of which are less than i”. Formally,

$P_0 = R$

$\forall i,j,k: P(i+1)jk = P_{ijk} \lor P_{iji} \land P_{iik}$

Then we can say that R' is the transitive closure of R as follows:

$R' = P_n$

This is just right for a for-loop (Chapter 5).

$R = P_0 \Rightarrow R' = P_n \iff \text{for } i := 0;..n \text{ do } R = P_i \Rightarrow R' = P(i+1) \text{ od}$

$R = P_i \Rightarrow R' = P(i+1) \iff$

$\text{for } j := 0;..n \text{ do }$ for $k := 0;..n \text{ do } R := (j;k) \rightarrow R_{jk} \lor R_{ji} \land R_{ik} \mid R \text{ od } \text{ od}$

That's the whole thing. If you want more detail, define A as follows.

$A_{ijk} = (\forall r: 0,..j \exists c: 0,..n: R_{rc} = P(i+1)rc)
\land (\forall c: 0,..k: R_{jc} = P(i+1)jc)
\land (\forall c: k,..n: R_{jc} = P_{ijc})
\land (\forall r: j+1,..n \exists c: k,..n: R_{rc} = P_{irc})$

Now $A_{i00} = R = P_i$ and $A_{ijn} = A_{i(j+1)0}$ and $A_{in0} = A(i+1)00$.

$A_{i00} \Rightarrow A'_{i00} \iff \text{for } i := 0;..n \text{ do } A_{i00} \Rightarrow A'(i+1)00 \text{ od}$

$A_{i00} \Rightarrow A'(i+1)00 \iff \text{for } j := 0;..n \text{ do } A_{ij0} \Rightarrow A'(i(j+1)0) \text{ od}$

$A_{ij0} \Rightarrow A'(i(j+1)0) \iff \text{for } k := 0;..n \text{ do } A_{ijk} \Rightarrow A'(ij(k+1)) \text{ od}$

$A_{ijk} \Rightarrow A'(ij(k+1)) \iff R := (j;k) \rightarrow R_{jk} \lor R_{ji} \land R_{ik}$

Of course, for-loops are not necessary.

(b) its reflexive transitive closure (the strongest reflexive and transitive relation that is implied by the given relation).

This is similar to part (a), but this time we define $P_{0jk} = j = k \lor R_{jk}$. Since P_0 is not true initially, we need to start with

$R' = P_n \iff \text{for } j := 0;..n \text{ do } R := (j;j) \rightarrow \top \mid R \text{ od}$

and then continue as before.