A program to find whether the number of ones in the binary representation of a given natural number is even or odd.

Let the given natural number be the initial value of natural variable \(n \), and report the answer as the final value of binary variable \(p \). Define

\[
R \equiv p' = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2) \\
Q \equiv p' = (p = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2))
\]

Then the refinements are

\[
R \iff p := T. \ Q \\
Q \iff \text{if } n=0 \text{ then ok else } p := p = \text{even} n. \ n := \text{div} n 2. \ Q \ \text{fi}
\]

The proof of the first refinement is one use of the Substitution Law. The last refinement, last case, is

\[
\text{off}
\]

because chopping off \(i \) bits from the right end of a binary number followed by chopping off \(j \) more bits is the same as chopping off \(i+j \) bits.

The last refinement, last case, is

\[
p' = (p = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2)) \iff n=0 \land ok \text{ \ expand } Q , \text{ two substitutions}
\]

\[
p' = (p = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2)) \iff n>0 \land (p := p = \text{even} n. \ n := \text{div} n 2. \ Q) \text{ \ expand } Q , \text{ two substitutions}
\]

\[
p' = (p = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2)) \iff n>0 \land p' = ((p = \text{even} n) = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2)) \text{ \ use the piece of arithmetic; also, drop } n>0 \text{ \ (we won't need it)}
\]

\[
p' = (p = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2)) \iff p' = ((p = \text{even} n) = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2)) \text{ \ binary = is associative}
\]

\[
(p' = p) = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2) \iff (p' = p) = (\text{even} n = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2))) \text{ \ transparency}
\]

\[
\text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2) = (\text{even} n = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2))) \text{ \ binary = is associative and symmetric}
\]

\[
\text{even} n = (\text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^i) 2) = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2))) \text{ \ in the first sum, separate out } i=0
\]

\[
\text{even} n = (\text{even} (\text{mod} n 2 + \Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2) = \text{even} (\Sigma i: \text{nat} \cdot \text{mod} (div n 2^{i+1} 2))
\]

If \(n \) is even, \(\text{mod} n 2 = 0 \). If \(n \) is odd, \(\text{mod} n 2 = 1 \), changing the evenness of the upper sum.

\[
T \iff \text{if } n=0 \text{ then } t'=t \text{ else } t' \leq t + \log n \ \text{fi}
\]

Then the refinements are

\[
T \iff p := T. \ T \\
T \iff \text{if } n=0 \text{ then ok else } p := p = \text{even} n. \ n := \text{div} n 2. \ t := t+1. \ T \ \text{fi}
\]

The proof of the first refinement is one trivial use of the Substitution Law. The second refinement is proven by cases. The first case is:

\[
T \iff n=0 \land ok \text{ \ expand } T \text{ and } ok \\
\text{if } n=0 \text{ then } t'=t \text{ else } t' \leq t + \log n \ \text{fi} \iff n=0 \land n'=n \land p'=p \land t'=t \text{ \ context}
\]
\[
\begin{align*}
\text{if } 0=0 \text{ then } t' &= t \text{ else } t' \leq t + \log 0 \text{ fi} \\ &\iff n=0 \land n'=n \land p'=p \land t'=t \quad \text{simplify} \\
T &\iff n=0 \land n'=n \land p'=p \land t'=t \\
T &\quad \text{base} \\
\text{The other case is} \\
T &\iff n>0 \land (p := p = \text{even } n. \ n := \text{div } n \ 2. \ t := t+1. \ T) \quad \text{expand } T \text{ and substitute} \\
&\quad \text{if } n=0 \text{ then } t'=t \text{ else } t' \leq t + \log n \text{ fi} \\
&\iff n>0 \land \text{if } \text{div } n \ 2 = 0 \text{ then } t'=t+1 \text{ else } t' \leq t+1 + \log (\text{div } n \ 2) \text{ fi} \\
&\quad \text{use } n>0 \text{ as context} \\
\iff t' \leq t + \log n \iff n>0 \land \text{if } n=1 \text{ then } t'=t+1 \text{ else } t' \leq t+1 + \log (\text{div } n \ 2) \text{ fi} \\
&\quad \text{increase } \text{div } n \ 2 \text{ to } n/2 \\
\iff t' \leq t + \log n \iff n>0 \land \text{if } n=1 \text{ then } t'=t+1 \text{ else } t' \leq t+1 + \log (n/2) \text{ fi} \\
&\quad \text{use context } n=1 \text{ in } \text{then } \text{ part, and } \log \text{ law in } \text{else } \text{ part} \\
\iff t' \leq t + \log n \iff n>0 \land \text{if } n=1 \text{ then } t'=t+\log n \text{ else } t' \leq t + \log n \text{ fi} \\
&\quad \text{case idempotent and specialize} \\
\iff T \\
\end{align*}
\]