Write a program to find the length of a longest sorted sublist of a given list, where

(a) the sublist must be consecutive items (a segment).

Let \(L \) be the list, and let \(j: \text{nat} \) be an index variable, and let \(m: \text{nat} \) be a variable recording the length of the longest sorted segment ending at index \(j \), and let \(n: \text{nat} \) be a variable recording the length of a longest sorted segment anywhere in the interval \(0::j \). The result is the final value of \(n \). Define \(\text{sorted} \) so that \(\text{sorted} \ h k \) tells whether the segment \(h;..k \) is sorted,
\[
\text{sorted} = \langle h, k; \text{nat}; \forall i, j; h, k; i \leq j \Rightarrow L_i \leq L_j \rangle
\]
and define \(\text{llss} \) so that \(\text{llss} \ j \) is the length of a longest sorted segment ending at index \(j \)
\[
\text{llss} = \langle j; 0..\#L + 1; \uparrow i; 0..j + 1; \text{if sorted} \ i \ j \ \text{then} \ j - i \ \text{else} \ \infty \ \text{fi} \rangle
\]
Then the problem is \(P \), defined as
\[
P = n’ = \uparrow i; 0..\#L + 1; \text{llss} \ i
\]
And one last definition:
\[
Q = 0 < j < \#L \land m = \text{llss} \ j \land n = (\uparrow i; 0..j + 1; \text{llss} \ i) \Rightarrow P
\]
which says that if \(j \) is an index (but not \(0 \)), and \(m \) is the length of a longest sorted segment ending at index \(j \), and \(n \) is the length of a longest sorted segment ending at or before index \(j \), then \(n’ \) is the length of a longest sorted segment. Now the solution is
\[
P \iff \text{if } \#L \leq 1 \text{ then } n := \#L \text{ else } j := 1, m := 1, n := 1. \ Q \ \text{fi}
\]
\[
Q \iff \text{if } (j - 1) \leq L j \text{ then } j := j + 1, m := m + 1, n := n \uparrow m. \ \text{if } j = \#L \text{ then } ok \ \text{else } Q \ \text{fi}
\]
\[
\text{else } j := j + 1, m := 1. \ \text{if } \#L - j < n \text{ then } ok \ \text{else } Q \ \text{fi} \ \text{fi}
\]
The timing is \(t’ \leq t + \#L \) and \(t’ \leq t + \#L - j \).

(b) the sublist consists of items in their order of appearance in the given list, but not necessarily consecutively.

§ This time let \(\text{llss} \ n \) be the length of a longest sorted sublist of list \(L[0..n] \). We can represent a sublist of \(L \) by a set \(S \) of indexes, which is a subset of \(\{0..n\} \). Formally,
\[
\text{llss} \ n = \uparrow S: (\langle S; \#(0..n); \forall i, j; \sim S \cdot i \leq j \Rightarrow L_i \leq L_j \rangle \cdot S)
\]
And this time I'll use a \textit{for}-loop. Define invariant
\[
A \ n \iff s = \text{llss} \ n
\]
Then
\[
A \ n \iff s = 0. \ A \ 0 \Rightarrow A’(\#L)
\]
\[
A \ 0 \Rightarrow A’(\#L) \iff \text{for } n := 0::\#L \text{ do } n: 0..\#L \land A \ n \Rightarrow A’n + 1 \ \text{od}
\]
The first refinement is easy to prove, the second doesn't need proof, and we have yet to refine \(n: 0..\#L \land A \ n \Rightarrow A’n + 1 \). As we go from \(n \) to \(n + 1 \), the new sublists are \([L n] \) whose length is \(1 \), and for each sorted sublist \(S \) in \(L[0..n] \) whose last item is less than or equal to \(L n \), the list \(S;[L n] \) whose length is \#S + 1 . To calculate that, we will form a new list \(M \) such that \(M k \) is the length of the longest sorted sublist whose last item is \(L k \). We strengthen \(A \).
\[
A \ n \iff s = \text{llss} \ n
\]
\[
\land \forall k:0..n. M \ k = \uparrow S: (\langle S; \#(0..k + 1); k \in S \land \forall i, j; \sim S \cdot i \leq j \Rightarrow L_i \leq L_j \rangle \cdot S)
\]
Note that \(s = \uparrow(M[0..n]) \) except when \(n=0 \). The remaining refinement will also use a \textit{for}-loop, for which we define invariant
\[
B \ m \iff (\forall k:0..n. M \ k = \uparrow S: (\langle S; \#(0..k + 1); k \in S \land \forall i, j; \sim S \cdot i \leq j \Rightarrow L_i \leq L_j \rangle \cdot S))
\]
\[
\land M \ n = 1\uparrow(\uparrow k: (\langle k: 0..m; \ L k \leq L n \rangle \cdot M \ k + 1))
\]
Now
\[
(B \ 0 \Rightarrow B’n) \land s’ = s \iff \text{for } m := 0..n \text{ do } (B \ m \Rightarrow B’(m + 1)) \land s’ = s \ \text{od}
\]

\[B_n \Rightarrow B'(n+1) \iff M_n := 1. (B_0 \Rightarrow B'n) \land s' = s. \quad s := s \uparrow (M_n) \]

\[(B_m \Rightarrow B'(m+1)) \land s' = s \iff \text{if } L_m \leq L_n \text{ then } M_n := (M_n) \uparrow (M_{m+1}) \text{ else } \text{ok fi} \]

If you object that the for-loop specification \((B_0 \Rightarrow B'n) \land s' = s\) is not exactly in the right form, I could use frame to put it in the right form, or use the more general for-loop rule. The solution just given has running time \((#L)^2/2\). For a solution with running time bounded by \((#L) \times \log (#L)\), instead of maintaining the list \(M\) of lengths of longest sorted sublists, maintain the list of minimum last items for each length, and replace the inner loop with a binary search.