
228 (segment sum count)
(a) Write a program to find, in a given list of naturals, the number of segments (sublists of

consecutive items) whose sum is a given natural.
(b) Write a program to find, in a given list of positive naturals, the number of segments

whose sum is a given natural.

After trying the question, scroll down to the solution.

(a) Write a program to find, in a given list of naturals, the number of segments whose sum is
a given natural.

§ Let L be the given list, and n be the given natural. The first problem is to say formally
“the number of segments in L whose sum is n ”. Instead of “segments”, we can say
“the number of naturals a and b such that 0≤a≤b≤#L ∧ Σ L [a;..b] = n ”. The
quantifier § turns a predicate into a bunch, and then ¢ tells the size of the bunch, but
unfortunately § works on only one variable, not two. Still, we can sum up the sizes.
Formally,

Σa· ¢§b· 0≤a≤b≤#L ∧ (Σ L [a;..b]) = n
But that's ugly. To get a neater, more workable expression, add axioms ⊤=1 and ⊥=0
equating binary values and numbers. Now the number of segments is

Σa, b· 0≤a≤b≤#L ∧ (Σ L [a;..b]) = n
Suppose the items of L are all 0 , and n=0 . Then there are (#L+1)×(#L+2)/2 segments
with the right sum, so the best solution is probably quadratic. Let i , j , s , and c be
natural variables. The desired result of the computation is R , defined as

R = cʹ = Σa, b· 0≤a≤b≤#L ∧ (Σ L [a;..b]) = n
I will need two more similar specifications A and B , defined as

A = cʹ = c + Σa, b· 0≤i≤a≤b≤#L ∧ (Σ L [a;..b]) = n
B = iʹ=i ∧ cʹ = c + Σb· 0≤j≤b≤#L ∧ s + (Σ L [j;..b]) = n

Now the refinements are
R ⇐ i:= 0. c:= 0. A
A ⇐ j:= i. s:= 0. B. if i=#L then ok else i:= i+1. A f
B ⇐ if s=n then c:= c+1 else ok f.

if j=#L ∨ s>n then ok else s:= s + L j. j:= j+1. B f
We prove the refinement of R by two substitutions. The refinement of A can be proven
by cases. First:

j:= i. s:= 0. B. i=#L ∧ ok substitutions in B
= iʹ=i ∧ cʹ = c + Σb· 0≤i≤b≤#L ∧ (Σ L [i;..b] = n). i=#L ∧ ok

remove sequential composition
= iʹ=i=#L ∧ cʹ = c + Σb· 0≤i≤b≤#L ∧ (Σ L [i;..b]) = n

Since i=#L , the sum is just the single value when i=b=#L .
So it doesn't change anything to put an a in there, i=a=b=#L .

= iʹ=i=#L ∧ cʹ = c + Σa, b· 0≤i≤a≤b≤#L ∧ (Σ L [a;..b]) = n
⇒ A
The other case is

j:= i. s:= 0. B. i⧧#L ∧ (i:= i+1. A) substitutions into B and A
= iʹ=i ∧ cʹ = c + Σb· 0≤i≤b≤#L ∧ (Σ L [i;..b]) = n.

cʹ = c + Σa, b· 0≤i+1≤a≤b≤#L ∧ (Σ L [a;..b]) = n
remove sequential composition

= cʹ = c + Σb· 0≤i≤b≤#L ∧ (Σ L [i;..b]) = n
 + Σa, b· 0≤i+1≤a≤b≤#L ∧ (Σ L [a;..b]) = n

The first sum looks at all segments starting at i .
The second sum looks at all segments starting at or after i+1 .

Together, they look at all segments starting at or after i .
⇒ A
The refinement of B can be broken into various cases.

B ⇐ s=n ∧ j=#L ∧ (c:= c+1)
B ⇐ s=n ∧ j⧧#L ∧ (c:= c+1. s:= s + L j. j:= j+1. B)
B ⇐ s>n ∧ ok
B ⇐ s<n ∧ j=#L ∧ ok
B ⇐ s<n ∧ j⧧#L ∧ (s:= s + L j. j:= j+1. B)

All five are very easy, so I leave them here. The disjunct s>n is not necessary for
correctness. Without it, execution time is exactly #L×(#L+1)/2 . With it, that's an upper
bound. So for time,

replace R with tʹ ≤ t + #L×(#L+1)/2
replace A with i≤#L ⇒ tʹ ≤ t + (#L–i)×(#L–i+1)/2 ∧ iʹ≤#L
replace B with j≤#L ⇒ tʹ ≤ t + #L – j ∧ jʹ≤#L ∧ iʹ=i

Again, easy.

(b) Write a program to find, in a given list of positive naturals, the number of segments
whose sum is a given natural.

no solution given

