Write a program to find, in a given list of naturals, the number of segments whose sum is a given natural.

Write a program to find, in a given list of positive naturals, the number of segments whose sum is a given natural.

After trying the question, scroll down to the solution.
Write a program to find, in a given list of naturals, the number of segments whose sum is a given natural.

§ Let \(L \) be the given list, and \(n \) be the given natural. The first problem is to say formally “the number of segments in \(L \) whose sum is \(n \)”. Instead of “segments”, we can say “the number of naturals \(a \) and \(b \) such that \(0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n \)”. The quantifier § turns a predicate into a bunch, and then \(\Sigma \) tells the size of the bunch, but unfortunately § works on only one variable, not two. Still, we can sum up the sizes. Formally,

\[
\Sigma a \cdot \forall b \cdot 0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n
\]

Suppose the items of \(L \) are all \(0 \), and \(n \neq 0 \). Then there are \((\#L+1) \times (\#L+2)/2\) segments with the right sum, so the best solution is probably quadratic. Let \(i, j, s, \) and \(c \) be natural variables. The desired result of the computation is \(R \), defined as

\[
R = c' = \Sigma a \cdot b \cdot 0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n
\]

I will need two more similar specifications \(A \) and \(B \), defined as

\[
A = c' = c + \Sigma a \cdot b \cdot 0 \leq i \leq b \leq \#L \land (\Sigma L [i;..b]) = n
B = i'=i \land c' = c + \Sigma b \cdot 0 \leq j \leq b \leq \#L \land s + (\Sigma L [j;..b]) = n
\]

Now the refinements are

\[
R \iff i=0. \ c:=0. \ A
A \iff j:=i. \ s:=0. \ B. \ \text{if} \ i=\#L \ \text{then} \ ok \ \text{else} \ i:=i+1. \ A \ fi
B \iff \text{if} \ s=n \ \text{then} \ c:=c+1 \ \text{else} \ ok \ \text{fi}.
\]

We prove the refinement of \(R \) by two substitutions. The refinement of \(A \) can be proven by cases. First:

\[
j:=i. \ s:=0. \ B. \ i=\#L \ \text{ok}
\]

substitutions in \(B \)

\[
i'=i \land c' = c + \Sigma b \cdot 0 \leq i \leq b \leq \#L \land (\Sigma L [i;..b]) = n. \ i=\#L \ \text{ok}
\]

remove sequential composition

\[
i'=i=\#L \land c' = c + \Sigma b \cdot 0 \leq i \leq b \leq \#L \land (\Sigma L [i;..b]) = n
\]

Since \(i=\#L \), the sum is just the single value when \(i=b=\#L \).

So it doesn’t change anything to put an \(a \) in there, \(i=a=b=\#L \).

\[
i'=i=\#L \land c' = c + \Sigma a \cdot b \cdot 0 \leq i \leq a \leq \#L \land (\Sigma L [a;..b]) = n
\]

\[
\Rightarrow A
\]

The other case is

\[
j:=i. \ s:=0. \ B. \ i=\#L \land (i:=i+1. \ A)
\]

substitutions into \(B \) and \(A \)

\[
i'=i \land c' = c + \Sigma b \cdot 0 \leq i \leq b \leq \#L \land (\Sigma L [i;..b]) = n.
\]

\[
c' = c + \Sigma a \cdot b \cdot 0 \leq i \leq+1 \leq a \leq \#L \land (\Sigma L [a;..b]) = n
\]

remove sequential composition

\[
c' = c + \Sigma b \cdot 0 \leq i \leq b \leq \#L \land (\Sigma L [i;..b]) = n
\]

\[
+ \Sigma a \cdot b \cdot 0 \leq i \leq+1 \leq a \leq \#L \land (\Sigma L [a;..b]) = n
\]

The first sum looks at all segments starting at \(i \).

The second sum looks at all segments starting at or after \(i+1 \).

Together, they look at all segments starting at or after \(i \).

\[
\Rightarrow A
\]

The refinement of \(B \) can be broken into various cases.

\[
B \iff s=n \land j=\#L \land (c:=c+1)
\]

\[
B \iff s=n \land j=\#L \land (c:=c+1. \ s:=s+L. \ j:=j+1. \ B)
\]

\[
B \iff s>n \land ok
\]

\[
B \iff s<n \land j=\#L \land ok
\]

\[
B \iff s<n \land j=\#L \land (s:=s+L. \ j:=j+1. \ B)
\]
All five are very easy, so I leave them here. The disjunct \(s > n \) is not necessary for correctness. Without it, execution time is exactly \(\#L \times (\#L + 1)/2 \). With it, that's an upper bound. So for time,

replace \(R \) with \(t' \leq t + \#L \times (\#L + 1)/2 \)
replace \(A \) with \(i \leq \#L \implies t' \leq t + (\#L - i) \times (\#L - i + 1)/2 \land i' \leq \#L \)
replace \(B \) with \(j \leq \#L \implies t' \leq t + \#L - j \land j' \leq \#L \land i' = i \)

Again, easy.

(b) Write a program to find, in a given list of positive naturals, the number of segments whose sum is a given natural.
no solution given