(a) Write a program to find, in a given list of naturals, the number of segments whose sum is a given natural.

Let L be the given list, and n be the given natural. The first problem is to say formally “the number of segments in L whose sum is n”. Instead of “segments”, we can say “the number of naturals a and b such that $0 \leq a \leq b \leq \#L \land \Sigma L [a;..b] = n$”. The quantifier \$ turns a predicate into a bunch, and then \$ tells the size of the bunch, but unfortunately \$ works on only one variable, not two. Still, we can sum up the sizes.

Formally,

$$\Sigma a \cdot \forall b \cdot 0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$$

But that’s ugly. To get a neater, more workable expression, add axioms $T=1$ and $\bot=0$ equating binary values and numbers. Now the number of segments is $\Sigma a, b \cdot 0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$ Suppose the items of L are all 0, and $n=0$. Then there are $(\#L/1) \times (\#L/2)/2$ segments with the right sum, so the best solution is probably quadratic. Let i, j, s, and c be natural variables. The desired result of the computation is R, defined as

$$R = c' = \Sigma a, b \cdot 0 \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$$

I will need two more similar specifications A and B, defined as

$$A = c' = c + \Sigma a, b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$$

$$B = i' = i \land c' = c + \Sigma b \cdot 0 \leq j \leq b \leq \#L \land s + (\Sigma L [j;..b]) = n$$

Now the refinements are

$$R \iff i:=0. \ c:=0. \ A$$

$$A \iff j:=i. \ s:=0. \ B. \ \text{if} \ i=\#L \ \text{then} \ ok \ \text{else} \ i:=i+1. \ A \ \text{fi}$$

$$B \iff \text{if} \ s=n \ \text{then} \ c:=c+1 \ \text{else} \ ok. \ \text{fi}.$$

We prove the refinement of R by two substitutions. The refinement of A can be proven by cases. First:

$$j:=i. \ s:=0. \ B. \ i=\#L \land \text{ok} \iff \text{substitutions in } B \ \text{and} \ A$$

$$i'=i \land c' = c + \Sigma b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n \iff \text{remove dependent composition}$$

$$i'=i=\#L \land c' = c + \Sigma b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$$

Since $i=\#L$, the sum is just the single value when $i=b=\#L$.

So it doesn't change anything to put an a in there, $i=a=b=\#L$.

$$i'=i=\#L \land c' = c + \Sigma a, b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n \iff A$$

The other case is

$$j:=i. \ s:=0. \ B. \ i\neq\#L \land (i:=i+1). \ A \iff \text{substitutions into } A$$

$$i'=i \land c' = c + \Sigma b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n \iff \text{remove dependent composition}$$

$$c' = c + \Sigma b \cdot 0 \leq i \leq a \leq b \leq \#L \land (\Sigma L [a;..b]) = n$$

The first sum looks at all segments starting at i.

The second sum looks at all segments starting at or after $i+1$.

Together, they look at all segments starting at or after i.

$$\iff A$$

The refinement of B can be broken into various cases.

$$B \iff s=n \land j=\#L \land (c:=c+1)$$

$$B \iff s=n \land j\neq\#L \land (c:=c+1. \ s:=s+Lj. \ j:=j+1. \ B)$$

$$B \iff s

$$B \iff s<n \land j=\#L \land ok$$

$$B \iff s

All five are very easy, so I leave them here. The disjunct \(s>n \) is not necessary for correctness. Without it, execution time is exactly \(\#L\times(\#L+1)/2 \). With it, that's an upper bound. So for time,

- replace \(R \) with \(t' \leq t + \#L\times(\#L+1)/2 \)
- replace \(A \) with \(i\leq\#L \implies t' \leq t + (\#L-i)\times(\#L-i+1)/2 \land i'\leq\#L \)
- replace \(B \) with \(j\leq\#L \implies t' \leq t + \#L-j \land j'\leq\#L \land i'=i \)

Again, easy.

(b) Write a program to find, in a given list of positive naturals, the number of segments whose sum is a given natural.