The problem is \(P \), defined as
\[
P = p' = \text{MAX} i: 0..\#L+1\cdot \text{MAX} j: i..\#L+1\cdot \prod L[j: i..j]
\]
using int variable \(p \) for the answer. We also use variable \(k: \text{nat} \) as a list index, and variables \(c, d, x: \text{int} \). Define condition
\[
J = p = (\text{MAX} i: 0..k+1\cdot \text{MAX} j: i..k+1\cdot \prod L[i..j])
\]
\[
\wedge c = (\text{MAX} i: 0..k+1\cdot \prod L[i..k])
\]
\[
\wedge d = (\text{MIN} i: 0..k+1\cdot \prod L[i..k])
\]
Here are the refinements.
\[
P \iff p := 1. \ c := 1. \ d := 1. \ k := 0. \ J \Rightarrow P
\]
\[
J \Rightarrow P \iff \text{if } k = \#L \text{ then } \text{ok}
\]
\[
\begin{aligned}
&\text{else if } Lk \geq 0 \text{ then } c := \text{max} (c \times Lk) 1. \ d := \text{min} (d \times Lk) 1
\end{aligned}
\]
\[
\begin{aligned}
&\text{else } x := c. \ c := \text{max} (d \times Lk) 1. \ d := \text{min} (x \times Lk) 1 \text{ fi.}
\end{aligned}
\]
\[
p := \text{max} p \ c. \ k := k + 1. \ J \Rightarrow P \text{ fi}
\]
and the timing is
\[
t' = t + \#L \leftarrow p := 1. \ c := 1. \ d := 1. \ k := 0. \ t' = t + \#L - k
\]
\[
t' = t + \#L - k \iff \text{if } k = \#L \text{ then ok}
\]
\[
\begin{aligned}
&\text{else if } Lk \geq 0 \text{ then } c := \text{max} (c \times Lk) 1. \ d := \text{min} (d \times Lk) 1
\end{aligned}
\]
\[
\begin{aligned}
&\text{else } x := c. \ c := \text{max} (d \times Lk) 1. \ d := \text{min} (x \times Lk) 1 \text{ fi.}
\end{aligned}
\]
\[
p := \text{max} p \ c. \ k := k + 1. \ t := t + 1. \ t' = t + \#L - k \text{ fi}
\]
Proof of the first refinement: after 4 substitutions, \(J \) simplifies to \(\top \).
The second refinement breaks into 3 cases. Each case begins with portation, so we are proving
\[
J \wedge \text{something} \Rightarrow P
\]
by starting with the antecedent. First case:
\[
J \wedge k = \#L \wedge \text{ok}
\]
\[
i \text{ncot } k = \#L \wedge p' = p \text{ the first conjunct of } J \text{ is } P \Rightarrow P
\]
Second case:
\[
J \wedge k + \#L \wedge Lk \geq 0
\]
\[
\wedge (c := \text{max} (c \times Lk) 1. \ d := \text{min} (d \times Lk) 1). \ p := \text{max} p \ c. \ k := k + 1. \ J \Rightarrow P
\]
Make 4 substitutions. Note that \(P \) does not mention any of the 4 variables
(it mentions \(p' \) but not \(p \)).
I'm reversing \(J \Rightarrow P \) to \(P \Leftarrow J \) for typesetting reasons.
\[
= \quad J \wedge k + \#L \wedge Lk \geq 0
\]
\[
\wedge (P \Leftarrow (\text{max} p (\text{max} c \times Lk) 1) = (\text{MAX} i: 0..k+2\cdot \text{MAX} j: i..k+2\cdot \prod L[i..j])
\]
\[
\wedge \text{max} (c \times Lk) 1 = (\text{MAX} i: 0..k+2\cdot \prod L[i..k+1])
\]
\[
\wedge \text{min} (d \times Lk) 1 = (\text{MIN} i: 0..k+2\cdot \prod L[i..k+1])
\]
We need \(J \wedge k + \#L \wedge Lk \geq 0 \) to discharge the implication, so we need to show that it implies the antecedent of the implication. \(J \) says that \(p \) is the maximum product of all segments ending at or before \(k \), and that \(c \) is the maximum product of all segments ending at \(k \), and that \(d \) is the minimum product of all segments ending at \(k \) (remember that we write indexes between items). To find the maximum product of all segments ending at or before \(k + 1 \), we need only consider the new sequences, which are those ending at \(k + 1 \). One of them is the empty sequence whose product is 1. The others are all one-item extensions of sequences ending at \(k \). Since the new item \(Lk \) is nonnegative, the maximum product of these extensions is the maximum product \(c \) of these sequences ending at \(k \) times the new item \(Lk \). So the maximum product of all segments ending at or before \(k \) is the maximum of \(p \), \(c \times Lk \), and 1. That's what the first two conjuncts of the
antecedent say, so they are discharged. The last conjunct of the antecedent is also discharged by a similar argument. This hint is ridiculously long, informal, and inadequate.

The last case is much like the previous case, but slightly more complicated because L_k is negative, and so multiplying by it switches maximums and minimums.

(b) the segment (sublist of consecutive items) whose product is maximum.