You are given a list L of at least 3 numbers such that $L \geq L(i+1)$ and $L(\#L-2) \leq L(\#L-1)$. A local minimum is an interior index $i: 1..\#L-1$ such that $L(i-1) \geq L(i) \leq L(i+1)$.

Write a program to find a local minimum of L.

\S Specification P is defined as

$P \equiv i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$

Here is a linear search solution. Let i be a natural variable.

$P \iff i := 1. \ Q$

$Q \iff \text{if } L(i) \leq L(i+1) \text{ then } \text{ok} \text{ else } i := i+1. \ Q \fi$

Now we need to define specification Q. Here is the first attempt: make it just like P except change the 1 to i.

$Q \equiv i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$

Proof of P refinement:

$i := 1. \ Q$

$\equiv i := 1. \ i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ expansion

$\equiv i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ substitution law

$\equiv P$

Proof of Q refinement, first case:

$L(i) \leq L(i+1) \land \text{ok}$ expansion

$\equiv L(i) \leq L(i+1) \land i = i$ portation

This is not quite enough to imply Q. We also need $i < \#L-1$ and $L(i-1) \geq L(i)$. So weaken Q.

$Q \equiv i < \#L-1 \land L(i-1) \geq L(i) \Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$

Now I have to redo the previous proof.

Proof of P refinement:

$i := 1. \ Q$

$\equiv i := 1. \ i < \#L-1 \land L(i-1) \geq L(i) \Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ expansion

$\equiv 1 < \#L-1 \land L(i-1) \geq L(i) \Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ substitution law

given $\#L \geq 3$ and given $L(i-1) \geq L(i)$

$\equiv \top \Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ identity

$\equiv i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$

$\equiv P$

Proof of Q refinement, first case:

$Q \iff L(i) \leq L(i+1) \land \text{ok}$ expansion

$\iff (i < \#L-1 \land L(i-1) \geq L(i) \Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1))$

$\iff L(i) \leq L(i+1) \land i = i$ portation

$\iff L(i) \leq L(i+1) \land i = i \land i < \#L-1 \land L(i-1) \geq L(i)$

$\Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ context

$\equiv \top$

Proof of Q refinement, last case:

$Q \iff L(i) > L(i+1) \land (i := i+1. \ Q)$ expansion

$\iff i < \#L-1 \land L(i-1) \geq L(i) \land L(i) > L(i+1) \land (i := i+1. \ Q)$ expansion

$\Rightarrow i: 1..\#L-1 \land L(i-1) \geq L(i) \leq L(i+1)$ remaining Q
There may be a better solution than linear search.

So that's the plan. Now write it formally. Resuming from where I left off,

The top line is

which is the same as

So I need to get rid of the antecedent of the inner implication. I can discharge it if I can show

implies the main consequent

Here's my informal thinking. I see that the consequent of the inner implication

implies the main consequent

So I need to get rid of the antecedent of the inner implication. I can discharge it if I can show

which is the same as

which is the same as

The top line is \(\top \). So let's work on the bottom line.

But we are given \(L(L(-2) \leq L(#L-1) \). So the antecedent is \(\bot \). So the bottom line is \(\top \).

So that's the plan. Now write it formally. Resuming from where I left off,

\[
\begin{align*}
& i < #L-1 \land L(i-1) \geq L i \land L i > L(i+1) \\
\Rightarrow & i': i,...#L-1 \land L(i'-1) \geq L i' \leq L(i'+1) & \text{substitution law} \\
& i < #L-1 \land L(i-1) \geq L i \land L i > L(i+1) \\
\Rightarrow & i': i,...#L-1 \land L(i'-1) \geq L i' \leq L(i'+1) \\
& i < #L-1 \land L(i-1) \geq L i \land L i > L(i+1) \\
\Rightarrow & i': i,...#L-1 \land L(i'-1) \geq L i' \leq L(i'+1) \\
\end{align*}
\]

There may be a better solution than linear search.