You are given a list L of at least 3 numbers such that $L_0 \geq L_1$ and $L_{(#L-2)} \leq L_{(#L-1)}$. A local minimum is an interior index i: 1,..,#L−1 such that $L_{(i-1)} \geq L_i \leq L_{(i+1)}$

Write a program to find a local minimum of L.

After trying the question, scroll down to the solution.
Specification P is defined as

\[P \equiv i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \]

Here is a linear search solution. Let i be a natural variable.

\[P \iff i := 1. \ Q \]

\[Q \iff \text{if } L \land i \leq L(i + 1) \text{ then } \text{ok else } i := i + 1. \ Q \]

Now we need to define specification Q. Here is the first attempt: make it just like P except change the 1 to i.

\[Q \equiv i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \]

Proof of P refinement:

\[
\begin{align*}
\text{expand } Q \\
i := 1. \ Q \\
\equiv i := 1. \ i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv P
\end{align*}
\]

Proof of Q refinement, first case:

\[
\begin{align*}
\text{expand } ok \\
L \land i \leq L(i + 1) \land \text{ok} \\
\equiv L \land i \leq L(i + 1) \land i' = i \\
\end{align*}
\]

This is not quite enough to imply Q. We also need $i < #L - 1$ and $L(i - 1) \geq L \land i$. So weaken Q.

\[
Q \equiv i < #L - 1 \land L(i - 1) \geq L \implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1)
\]

Now I have to redo the previous proof.

Proof of P refinement:

\[
\begin{align*}
\text{expand } Q \\
i := 1. \ Q \\
\equiv i := 1. \ i < #L - 1 \land L(i - 1) \geq L \implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv 1 < #L - 1 \land L \geq L \implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv \top \implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv P
\end{align*}
\]

Proof of Q refinement, first case:

\[
\begin{align*}
\text{expand } Q \text{ and } ok \\
Q \iff L \land i \leq L(i + 1) \land \text{ok} \\
\iff (i < #L - 1 \land L(i - 1) \geq L \implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1)) \\
\iff L \land i \leq L(i + 1) \land i' = i \\
\iff L \land i \leq L(i + 1) \land i' = i \land i < #L - 1 \land L(i - 1) \geq L \\
\implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\equiv \top
\end{align*}
\]

Proof of Q refinement, last case:

\[
\begin{align*}
\text{expand first } Q \text{ and portation} \\
Q \iff L \land i > L(i + 1) \land (i := i + 1. \ Q) \\
\iff i < #L - 1 \land L(i - 1) \geq L \land L \land L(i > L(i + 1) \land (i := i + 1. \ Q) \\
\implies i': 1..#L - 1 \land L(i' - 1) \geq L \land i' \leq L(i' + 1) \\
\end{align*}
\]
There may be a better solution than linear search.

So that's the plan. Now write it formally. Resuming from where I left off,

Here's my informal thinking. I see that the consequent of the inner implication

implies the main consequent

So I need to get rid of the antecedent of the inner implication. I can discharge it if I can show

which is the same as

which is the same as

The top line is \(\top \). So let's work on the bottom line.

But we are given \(L(\#L-2) \leq L(\#L-1) \). So the antecedent is \(\bot \). So the bottom line is \(\top \).

So that's the plan. Now write it formally. Resuming from where I left off,

There may be a better solution than linear search.