
216 (diagonal) Some points are arranged around the perimeter of a circle. The distance from
each point to the next point going clockwise around the perimeter is given by a list.
Write a program to find two points that are farthest apart.

After trying the question, scroll down to the solution.

§ If necessary, we will assume that there are at least two points. We want to find two points
that most nearly make a diagonal. Equivalently, we want to find two points that are
farthest apart around the perimeter. Equivalently, we want to find a segment of the list
whose sum is most nearly half the total list sum. Let the list be L (a constant). We can
indicate the two points by the final values of natural variables m and n . Formally, the
problem is P where

P = ∀i, j· 0≤i≤j≤#L ⇒ abs ((ΣL) – 2×ΣL[mʹ;..nʹ]) ≤ abs ((ΣL) – 2×ΣL[i;..j])
We introduce natural variables k and l to indicate a segment of the list, variable c to
be twice the sum of the segment k;..l , variable d to be twice the sum of the “best”
segment m;..n so far, and variable s to be the sum of the entire list (the perimeter).
Formally

A = (∀i, j· 0≤i≤j≤l≤#L ∧ 0≤i≤k≤l≤#L
⇒ abs ((ΣL) – 2×ΣL[m;..n]) ≤ abs ((ΣL) – 2×ΣL[i;..j]))

∧ (c = 2×ΣL[k;..l]) ∧ (d = 2×ΣL[m;..n]) ∧ (s = ΣL)
Now the refinements.

P ⇐ k:= 0. l:= 0. c:= 0. m:= 0. n:= 0. d:= 0. s:= ΣL. A⇒P
s:= ΣL ⇐ see book pages 44 and 67
A⇒P ⇐

if l=#L ∧ c≤s then ok
else if c≤s then c:= c + 2 × L l. l:= l+1 else c:= c – 2 × L k. k:= k+1 f.

if abs (s–c) < abs (s–d) then m:= k. n:= l. d:= c else ok f.
A⇒P f

For the time, insert t:= t+1 in front of the recursive call, and
replace P by tʹ ≤ t + 3×#L
replace s:= ΣL by tʹ = t + #L
replace A⇒P by tʹ ≤ t + 2×#L – k – l

