Given a list \(L \) such that \(L(\square L) = \square L \), write a program to sort \(L \) in linear time and constant space. The only change permitted to \(L \) is to swap two items.

After trying the question, scroll down to the solution.
The problem is P, defined as

$$P \equiv L(\Box L) = \Box L \Rightarrow L' = [0;\ldots;\#L]$$

The only change permitted to L is swap, defined as

$$\text{swap } i j = L := i \rightarrow L j \ j \rightarrow L i \ \mid L$$

Execution time has to be linear, so that suggests starting an index variable k at 0, and moving up by $k := k+1$ until $k = \#L$, so that the part of the list before k is in order, and therefore the part of the list from k onward has the right items but maybe not yet in the right order.

$$P \iff k := 0. \ Q$$

$$Q \iff \begin{cases} k = \#L \text{ then } & \text{ok} \\ \text{else if } Lk = k & \text{then } k := k+1. \ Q \\ \text{else swap } (Lk)k. \ Q \ \text{fi} \end{cases}$$

To define Q, we can look at P for inspiration. Perhaps

$$Q \equiv L(k,\ldots;\#L) = k,\ldots;\#L \Rightarrow L' = L[0;\ldots;k] ;; [k;\ldots;\#L]$$

I think that will work. But I think it will be easier to prove the Q refinement if we weaken Q by strengthening its antecedent. I'm going to try

$$Q \equiv L[0;\ldots;k] = [0;\ldots;k] \land L(k,\ldots;\#L) = k,\ldots;\#L \Rightarrow L' = L[0;\ldots;k] ;; [k;\ldots;\#L]$$

This says: if the first part of L is done, and the last part has the right items (but not necessarily in the right order), then we complete the job by leaving the first part of L alone and putting the last part in order.

Proof of P refinement:

$$k := 0. \ Q$$

$$= \quad \begin{array}{c} k := 0. \ L[0;\ldots;k] = [0;\ldots;k] \land L(k,\ldots;\#L) = k,\ldots;\#L \Rightarrow L' = L[0;\ldots;k] ;; [k;\ldots;\#L] \\ \text{Substitution Law} \\ \text{simplify} \end{array}$$

$$= \quad \begin{array}{c} P \end{array}$$

Proof of first case of Q refinement:

$$k = \#L \land \text{ok} \Rightarrow Q$$

$$= \quad \begin{array}{c} k = \#L \land k' = k \land L' = L \\ \Rightarrow (L[0;\ldots;k] = [0;\ldots;k] \land L(k,\ldots;\#L) = k,\ldots;\#L \Rightarrow L' = L[0;\ldots;k] ;; [k;\ldots;\#L]) \quad \text{context} \\ \text{simplify} \end{array}$$

$$= \quad \begin{array}{c} \top \end{array}$$

Proof of middle case of Q refinement:

$$k = \#L \land Lk = k \land (k := k+1. \ Q)$$

$$= \quad \begin{array}{c} k = \#L \land Lk = k \\ \land (L[0;\ldots;k+1] = [0;\ldots;k+1] \land L(k+1,\ldots;\#L) = k+1,\ldots;\#L \Rightarrow L' = L[0;\ldots;k+1] ;; [k+1;\ldots;\#L]) \quad \text{use context } Lk=k \text{ to simplify the implication} \\ \text{simplify} \end{array}$$

$$= \quad \begin{array}{c} k = \#L \land Lk = k \land Q \end{array}$$
Proof of last case of \(Q \) refinement:

\[
\begin{align*}
& k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \Rightarrow Q \\
\Rightarrow & \; k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \\
\Rightarrow & \; k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \\
\Rightarrow & \; (L[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L) \; \text{portation} \\
\Rightarrow & \; k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \\
\Rightarrow & \; L'[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L \\
\Rightarrow & \; L' = L[0;..;k]. \\
\end{align*}
\]

To prove this implication, I'll go from the antecedent on the top line to the consequent on the bottom line.

\[
\begin{align*}
& k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \\
\land & \; (L[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L) \\
\Rightarrow & \; L'[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L \\
\Rightarrow & \; L' = L[0;..;k]. \\
\end{align*}
\]

Proof of last case of \(Q \) refinement:

\[
\begin{align*}
& k+\#L \land L \neq k \land (\text{swap} (Lk) k). \; Q) \land L[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L \\
\land & \; (L[0;..;\neq k] = [0;..;k] \land L(k,..#L) = k,..#L) \\
\Rightarrow & \; L'[0;..;k] = [0;..;k] \land L(k,..#L) = k,..#L \\
\Rightarrow & \; L' = L[0;..;k]. \\
\end{align*}
\]

With time, the refinements are

Recursive time is bounded by \(2 \times \#L \). Counting just \textit{swaps}, the time is bounded by \(\#L \) .
\[A \iff k := 0. \ B \]
\[B \iff \begin{align*}
& \text{if } k = \#L \text{ then } \text{ok} \\
& \text{else if } Lk = k \text{ then } k := k + 1. \ t := t + 1. \ B \\
& \text{else } \text{swap } (Lk) \ k. \ t := t + 1. \ B \fi \fi \]

Proof of \textit{A} refinement:
\[
\begin{align*}
k := 0. & \iff B \\
k := 0. & \iff t' \leq t + \#L - k + f \ k \\
t' \leq t + \#L - 0 + f \ 0 & \iff A
\end{align*}
\]

Proof of first case of \textit{B} refinement:
\[
\begin{align*}
k &\iff \#L \land k = k \land (k := k + 1. \ B) \iff B \\
k &\iff \#L \land k \land L' = L \land t' = t \implies t' \leq t + \#L - k + f \ k \land \text{context} \\
k &\iff \#L \land k \land L' = L \land t' = t \implies t' \leq t + \#L - \#L + f \ (#L) \land \text{simplify and apply} \\
k &\iff \#L \land k = k \land L' = L \land t' = t \implies 0 \leq \#L_{j+1} \land \text{simplify} \\
k &\iff \#L \land k = k \land L' = L \land t' = t \implies 0 \leq 0 \land \text{simplify and base} \\
& \iff \top
\end{align*}
\]

Proof of middle case of \textit{B} refinement:
\[
\begin{align*}
k \iff \#L \land \#L = k \land (k := k + 1. \ B) & \iff B \\
k \iff \#L \land \#L = k \land (k := k + 1. \ t' \leq t + \#L - k + f \ k) \land \text{substitution law} \\
k \iff \#L \land \#L = k \land t' \leq t + 1 + \#L - k - 1 + f \#k+1 \land \text{simplify} \\
k \iff \#L \land \#L = k \land t' \leq t + \#L - k + f \ (k+1) \land \text{context } L \leq k \implies f \# \leq f \# \land \text{specialize} \\
k \iff \#L \land \#L = k \land t' \leq t + \#L - k + f \ k \\
& \iff \top
\end{align*}
\]

Proof of last case of \textit{B} refinement:
\[
\begin{align*}
k \iff \#L \land \#L = k \land (\text{swap } (Lk) \ k. \ t := t + 1. \ B) & \iff \text{swap and } B \\
k \iff \#L \land \#L = k \land \text{(L := Lk } \rightarrow \text{Lk } \mid k \rightarrow \text{L(Lk) } \mid L. \ t := t + 1. \ t' \leq t + \#L - k + f \ k) \\
& \text{The next step looks like it should be the Substitution Law.} \\
& \text{But } f \text{ is defined in terms of } L. \text{ So we have to apply } f \text{ first.} \\
& \iff k \iff \#L \land \#L = k \land \text{swap does not affect length} \\
& \iff k \iff \#L \land \#L = k \land t' \leq t + 1 + \#L - k + f \# \land t' \leq t + \#L - k + f \# \land \text{swap reduces the number of out-of-place items by } 1 \text{ or } 2 \\
& \iff k \iff \#L \land \#L = k \land t' \leq t + 1 + \#L - k + f \# \land (L := Lk } \rightarrow \text{Lk } \mid k \rightarrow \text{L(Lk) } \mid L) j \iff j \\
& \iff k \iff \#L \land \#L = k \land t' \leq t + \#L - k + f \ k \land \text{specialize} \\
& \iff \top
\end{align*}
\]

And that completes the last case of the \textit{B} refinement.