Given a natural number and a list of natural numbers, write a program to determine if every natural number up to the given number is an item in the list.

Let the natural number be \(n \), and let the list be \(L \). We will look through \(L \) from beginning to end, remembering which numbers in \(0, \ldots, n \) have been seen. Let \(B: [n^*\text{bin}] \) be a list variable to say what has been found. To start, \(B = [n^*\bot] \) saying that no numbers in \(0, \ldots, n \) have been found yet. In the end, if \(B' = [n^*\top] \) then all \(n \) numbers are present in list \(L \). The specification is \(S \), defined as

\[
S = \forall i: 0, \ldots, n \cdot B'i = \exists j: 0, \ldots, n\cdot L j = i
\]

Introduce natural variable \(k \) and define

\[
R = 0 \leq k \leq \#L \land (\forall i: 0, \ldots, n \cdot B i = \exists j: 0, \ldots, k \cdot L j = i) \implies S
\]

Now refine

\[
S \iff B: [n^*\bot], k: 0, R
\]

\[
R \iff \text{if } k = \#L \text{ then } \text{ok} \else \text{if } L k < n \text{ then } B: L k \rightarrow \top \mid B \text{ else } \text{ok} \cdot k := k + 1 \cdot R \fi
\]

Proof of the \(S \) refinement:

\[
B:=[n^*\bot], k:=0, R
\]

\[
= B:=[n^*\bot], k:=0, 0 \leq k \leq \#L \land (\forall i: 0, \ldots, n \cdot B i = \exists j: 0, \ldots, k \cdot L j = i) \implies S
\]

substitution law twice. Note: \(S \) does not mention \(B \) nor \(k \)

\[
= 0 \leq 0 \leq \#L \land (\forall i: 0, \ldots, n \cdot [n^*\bot] i = \exists j: 0, \ldots, \bot \cdot L j = i) \implies S
\]

\[
= 0 \leq 0 \leq \#L \land (\forall i: 0, \ldots, n \cdot \bot = \exists j: 0, \ldots, \bot \cdot L j = i) \implies S
\]

\[
= \top \land \top \implies S
\]

\[
= S
\]

Proof of the \(R \) refinement, by cases. First case

\[
k = \#L \land \text{ok} \implies R
\]

\[
= k = \#L \land k' = k \land B' = B \implies (0 \leq k \leq \#L \land (\forall i: 0, \ldots, n \cdot B i = \exists j: 0, \ldots, k \cdot L j = i) \implies S)
\]

\[
= k = \#L \land k' = k \land B' = B \land 0 \leq k \leq \#L \land (\forall i: 0, \ldots, n \cdot B i = \exists j: 0, \ldots, k \cdot L j = i)
\]

\[
\implies (\forall i: 0, \ldots, n \cdot B'i = \exists j: 0, \ldots, \#L \cdot L j = i)
\]

\[
= \top
\]

For the second case of the \(R \) refinement, I start with a subexpression of the right side.

\[
\text{if } L k < n \text{ then } B: L k \rightarrow \top \mid B \text{ else } \text{ok} \cdot k := k + 1 \cdot R \fi
\]

\[
= \text{if } L k < n \text{ then } B: L k \rightarrow \top \mid B \text{ else } \text{ok} \cdot k := k + 1 \cdot R \fi \text{ expand } R \text{ twice}
\]

\[
= \text{if } L k < n \text{ then } 0 \leq k + 1 \leq \#L \land (\forall i: 0, \ldots, n \cdot (L k \rightarrow \top \mid B) i = \exists j: 0, \ldots, k + 1 \cdot L j = i) \implies S
\]

\[
= \text{else } 0 \leq k + 1 \leq \#L \land (\forall i: 0, \ldots, n \cdot B i = \exists j: 0, \ldots, k + 1 \cdot L j = i) \implies S \fi
\]

\[
= \text{UNFINISHED}
\]

Now the second case of the \(R \) refinement, using the previous simplification:

\[
k = \#L \land (\text{if } L k < n \text{ then } B: L k \rightarrow \top \mid B \text{ else } \text{ok} \cdot k := k + 1 \cdot R) \implies R
\]

\[
= \text{UNFINISHED}
\]

\[
= \top
\]

The recursive time is \(\#L \).