
192 (sorted two-dimensional search)  Write a program to find a given item in a given 2-
dimensional array in which each row is sorted and each column is sorted.  The execution 
time must be linear in the sum of the dimensions.

After trying the question, scroll down to the solution.



§ Let the array be  A , let its dimensions be  n  by  m , and let the item we seek be  x .  If our 
search eliminates items one by one, the time will be  n×m .  For execution time  n+m  we 
have to eliminate a whole row or column each time we look at an item.  Since the rows 
and columns are sorted, we can do that by looking at an end of a row or column.  If we 
look at the top left corner  A 0 0 , and we see  x < A 0 0 , we can eliminate both column  0  
and  row  0  and, in fact, the whole array;  but if  x > A 0 0 , we cannot eliminate anything 
but the one item  A 0 0 .  The bottom right corner has the same problem.  So let's look at 
the bottom left corner.  If we see  x > A (n–1) 0 , we can eliminate column  0 ;  if we see  
x < A (n–1) 0 , we can eliminate row  n–1 .  Then the problem is the same, but one row or 
column smaller.  We could equally well start at the top right corner, but let's start at the 
bottom left.  We'll need integer variables  i  and  j  to keep track of the row and column;  
they start at  i=n–1 ∧ j=0 , and they finish at or before  iʹ=0 ∨ jʹ=m–1  (note:  ∨ ).  Now 
we need some way to indicate  x  is not found, so that can be either  i  gets too small or  j  
gets too big:  iʹ=–1 ∨ jʹ=m .

The problem, except for time, is  P , where
P   =   if x: A(0,..n)(0,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f

Now we need to describe the remaining problem  Q  when we are partway through 
searching.  A picture helps:  the remaining search area is the clear part, and  A i j  is its 
bottom left corner.

Define
Q  =  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f

Then
P   ⇐ i:= n–1.  j:= 0.  Q
Q   ⇐ if i=–1 ∨ j=m then ok

else if A i j > x then i:= i–1.  Q
else if A i j < x then j:= j+1.  Q

else ok f f f

Here is the proof.  First the refinement of  P .
i:= n–1.  j:= 0.  Q expand  Q ;  substitution law twice

= if x: A(0,..n)(0,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f
= P

Now the refinement of  Q .  We use case analysis.
Q   ⇐   (i=–1 ∨ j=m) ∧ ok expand  Q , mirror

=       (i=–1 ∨ j=m) ∧ ok
⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f distribution, antidist

= (i=–1 ∧ ok  ⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f)
∧ (j=m ∧ ok  ⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f) expand  ok

= (i=–1 ∧ iʹ=i ∧ jʹ=j  ⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f)
∧ (j=m ∧ iʹ=i ∧ jʹ=j  ⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f)

antecedent context

j

n

m

i+1

00



= (i=–1 ∧ iʹ=i ∧ jʹ=j  ⇒  if x: A(0,..0)(j,..m) then x = A iʹjʹ else –1=–1 ∨ jʹ=m f)
∧ (j=m ∧ iʹ=i ∧ jʹ=j  ⇒  if x: A(0,..i+1)(m,..m) then x = A iʹjʹ else iʹ=–1 ∨ m=m f)

Each  if  condition is  ⊥  because the bunch is  null , and the  else-part is  ⊤ .
= ⊤

Next case:
Q   ⇐   i⧧–1 ∧ j⧧m ∧ A i j > x ∧ (i:= i–1.  Q) expand first  Q , mirror

=       i⧧–1 ∧ j⧧m ∧ A i j > x ∧ (i:= i–1.  Q)
⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f expand  Q , substitution

=       i⧧–1 ∧ j⧧m ∧ A i j > x ∧  if x: A(0,..i)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f
⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f If  A i j > x  and

row  i  is sorted, then  ¬ x: A i(j,..m)  and so  x: A(0,..i)(j,..m) = x: A(0,..i+1)(j,..m)
= ⊤

Next case:
Q   ⇐   i⧧–1 ∧ j⧧m ∧ A i j < x ∧ (j:= j+1.  Q) just like the previous case

= ⊤

Last case:
Q   ⇐   i⧧–1 ∧ j⧧m ∧ A i j = x ∧ ok expand  Q , mirror

=       i⧧–1 ∧ j⧧m ∧ A i j = x ∧ ok
⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f expand  ok

=       A i j = x ∧ iʹ=i ∧ jʹ=j
⇒  if x: A(0,..i+1)(j,..m) then x = A iʹjʹ else iʹ=–1 ∨ jʹ=m f context  A i j = x

makes  if  condition  ⊤ , and context  A i j = x ∧ iʹ=i ∧ jʹ=j  makes  then  part  ⊤ .
= ⊤

The timing proof is much easier.  P  becomes  tʹ ≤ t+n+m  and  Q  becomes
–1≤i<n ∧ 0≤j≤m ⇒ tʹ ≤ t+i+1+m–j


