You are given an unsorted list of length n whose items are the numbers $0,..,n+1$ with one number missing. Write a program to find the missing number.

Let the given list be L (a constant), and its length is n (a constant). Then

$L(0,..,n): 0,..,n+1 \land \forall i, j: 0,..,n \cdot i \neq j \Rightarrow L_i \neq L_j$

Let $m: nat$ be a variable whose final value will be the missing number. The problem can be stated

$m': 0,..,n+1 \land \neg m': L(0,..,n)$

One way to solve the problem is with an extra list variable $M: [(n+1)*bin]$ to record which numbers are present in L. Here's an easier way: the problem is

$m' = (\Sigma[0;..,n]) - (\Sigma L)$

and its solution is

$m' = (\Sigma[0;..,n+1]) - (\Sigma L) \iff m := n \times (n+1)/2. A0 \Rightarrow A'n$

$A0 \Rightarrow A'n \iff \text{for } i := 0;..,n \text{ do } i: 0,..,n \land Ai \Rightarrow A'(i+1) \text{ od}$

$i: 0,..,n \land Ai \Rightarrow A'(i+1) \iff m := m - Li$

where $Ai \equiv m = (\Sigma[0;..,n+1]) - (\Sigma L[0;..,i])$.

Similarly the problem can be stated as

$m' = n + \Sigma i: 0,..,n \cdot i - Li$

and solved as

$m' = n + \Sigma i: 0,..,n \cdot i - Li \iff m := n. B0 \Rightarrow B'n$

$B0 \Rightarrow B'n \iff \text{for } j := 0;..,n \text{ do } j: 0,..,n \land Bj \Rightarrow B'(j+1) \text{ od}$

$j: 0,..,n \land Bj \Rightarrow B'(j+1) \iff m := m + j - Lj$

where $Bj \equiv m = n + \Sigma i: 0,..,j \cdot i - Li$. For either solution, recursive time is $t' = t + n$.