(sorted two-dimensional search) Write a program to find a given item in a given 2-dimensional array in which each row is sorted and each column is sorted. The execution time must be linear in the sum of the dimensions.

Let the array be A, let its dimensions be n by m, and let the item we seek be x. The problem, except for time, is P, where

$$P = \text{if } x: A(0..n)(0..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \vee j' = m \text{ fi}$$

The idea is to start at the lower left corner of the array, and by comparing that item with x we can cross off an entire row or column, and then repeat. We'll need integer variables i and j to keep track of the row and column. Define

$$Q = -1 \leq i < n \land 0 \leq j < m \Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \vee j' = m \text{ fi}$$

which specifies the search in the clear part of the picture.

Here is the proof. First the refinement of P.

$$i := n - 1 \land j := 0. \quad Q \quad \text{expand } Q; \text{ substitution law twice}$$

$$\Rightarrow -1 \leq n - 1 < n \land 0 \leq 0 < m \Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \vee j' = m \text{ fi}$$

$$= P$$

Now the refinement of Q. We use case analysis.

$$Q \Leftarrow (i = -1 \lor j = m) \land ok \quad \text{expand } Q, \text{ portation}$$

$$\Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi} \quad \text{distribution, antidist}$$

$$= (\text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi})$$

$$\land (j = m \land i = -1 \lor 0 \leq j \leq m) \land -1 \leq i < n \land 0 \leq j \leq m$$

$$\Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi} \quad \text{expand ok}$$

$$= (\text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi})$$

$$\land (j = m \land i = -1 \lor 0 \leq j \leq m) \land -1 \leq i < n \land 0 \leq j \leq m$$

$$\Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi} \quad \text{antecedent context}$$

$$= (\text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi})$$

$$\land (j = m \land i = -1 \lor 0 \leq j \leq m) \land -1 \leq i < n \land 0 \leq j \leq m$$

$$\Rightarrow \text{if } x: A(0..i+1)(j..m) \text{ then } x = A[i']j' \text{ else } i' = -1 \lor j' = m \text{ fi}$$

$$= T$$
The timing proof is much easier. P becomes $t' \leq t+n+m$ and Q becomes $-1 \leq i < n \land 0 \leq j \leq m \Rightarrow t' \leq t+i+1+m-j$