- 179 $\sqrt{}$ (binary exponentiation) Given natural variables x and y, write a program for $y' = 2^x$ without using exponentiation.
- § see book Subsection 4.1.2 and scroll down for proofs. See also Subsection 5.2.3.

In the textbook on page 44 there is the solution

0
$$y'=2^x \leftarrow \text{if } x=0 \text{ then } x=0 \Rightarrow y'=2^x \text{ else } x>0 \Rightarrow y'=2^x \text{ fi}$$

1
$$x=0 \Rightarrow y'=2^x \iff y:=1. \ x:=3$$

2
$$x>0 \Rightarrow y'=2^x \iff x>0 \Rightarrow y'=2^{x-1}. y'=2\times y$$

3
$$x>0 \Rightarrow y'=2^{x-1} \iff x'=x-1. \ y'=2^x$$

4
$$y'=2\times y \iff y:=2\times y. \ x:=5$$

5
$$x'=x-1 \iff x:=x-1. y:=7$$

Proof of refinement 0.

$$y'=2^x$$
 case creation (x is natural)
= if x=0 then x=0 \Rightarrow y'=2x else x>0 \Rightarrow y'=2x fi

Proof of refinement 1.

$$(x=0 \Rightarrow y'=2^x \iff y:= 1. \ x:= 3)$$
 portation
 $= x=0 \land (y:= 1. \ x:= 3) \Rightarrow y'=2^x$ definition of assignment and substitution law
 $= x=0 \land y'=1 \land x'=3 \Rightarrow y'=2^x$ context
 $= x=0 \land y'=1 \land x'=3 \Rightarrow 1=2^0$ arithmetic
 $= x=0 \land y'=1 \land x'=3 \Rightarrow \top$ base
 $= \top$

Proof of refinement 2.

$$x>0 \Rightarrow y'=2^{x-1}$$
. $y'=2\times y$ sequential composition
 $\exists x'', y'' \cdot (x>0 \Rightarrow y''=2^{x-1}) \land y'=2\times y''$ idempotent (x'' does not appear)
 $\exists y'' \cdot (x>0 \Rightarrow y''=2^{x-1}) \land y'=2\times y''$ arithmetic
 $\exists y'' \cdot (x>0 \Rightarrow y''=2^{x-1}) \land y''=y'/2$ one-point
 $\exists x>0 \Rightarrow y'/2 = 2^{x-1}$ arithmetic
 $\exists x>0 \Rightarrow y'=2^{x-1}$

Proof of refinement 3.

$$(x>0 \Rightarrow y'=2^{x-1} \iff x'=x-1. \ y'=2^x)$$
 portation
 $= x>0 \land (x'=x-1. \ y'=2^x) \Rightarrow y'=2^{x-1}$ sequential composition
 $= x>0 \land (\exists x'', y'' \cdot x''=x-1 \land y'=2^{x''}) \Rightarrow y'=2^{x-1}$ idempotent and one-point
 $= x>0 \land y'=2^{x-1} \Rightarrow y'=2^{x-1}$ specialization
 $= x>0 \land y'=2^{x-1} \Rightarrow y'=2^{x-1}$

Proof of refinement 4.

$$y:= 2 \times y$$
. $x:= 5$ definition of assignment and substitution law $x'=5 \wedge y'=2 \times y$ specialization $y'=2 \times y$

Proof of refinement 5.

$$x:=x-1$$
. $y:=7$ definition of assignment and substitution law $x'=x-1 \land y'=7$ specialization $\Rightarrow x'=x-1$