
170 Let  s  and  n  be  nat  variables.  Here is a refinement.
sʹ = s + 2n – 1   ⇐   if n=0 then ok else n:= n–1.  s:= s + 2n.  sʹ = s + 2n – 1 f

(a) Prove it.
(b) Insert appropriate time increments according to the recursive measure, and write 

appropriate timing specifications.
(c) Prove the timing refinement.

After trying the question, scroll down to the solution.



(a) Prove it.
§ By cases.  First case:

(sʹ = s + 2n – 1  ⇐  n=0 ∧ ok) expand  ok
= (sʹ = s + 2n – 1  ⇐  n=0 ∧ sʹ=s ∧ nʹ=n) context
= (s = s + 20 – 1  ⇐  n=0 ∧ sʹ=s ∧ nʹ=n) simplify and specialize
⇒ ⊤
Last case, right side:

n⧧0 ∧ (n:= n–1.  s:= s + 2n.  sʹ = s + 2n – 1) substitution law twice
= n⧧0 ∧ sʹ = s + 2n–1 + 2n–1 – 1 simplify and specialize
⇒ sʹ = s + 2n – 1

(b) Insert appropriate time increments according to the recursive measure, and write appro-
priate timing specifications.

§ tʹ = t+n   ⇐   if n=0 then ok else n:= n–1.  s:= s + 2n.  t:= t+1.  tʹ = t+n f

(c) Prove the timing refinement.
§ By cases.  First case:

(tʹ = t+n  ⇐  n=0 ∧ ok) expand  ok
= (tʹ = t+n  ⇐  n=0 ∧ sʹ=s ∧ nʹ=n ∧ tʹ=t) context
= (t = t+0  ⇐  n=0 ∧ sʹ=s ∧ nʹ=n ∧ tʹ=t) simplify and specialize
⇒ ⊤
Last case, right side:

n⧧0 ∧ (n:= n–1.  s:= s + 2n.  t:= t+1.  tʹ = t+n) substitution law 3 times
= n⧧0 ∧ tʹ = t+1 + n–1 simplify and specialize
⇒ tʹ = t+n


