Let n and d be nat variables. Here is a refinement.

$$n' = n + d \times (d-1)/2$$

if
$$d$$
=0 **then** ok **else** d := d -1. n := n + d . n' = n + d × $(d$ -1)/2 **fi**

- (a) Prove it.
- (b) Insert appropriate time increments according to the recursive measure, and write an appropriate timing specification and refinement.
- (c) Prove the timing refinement.

After trying the question, scroll down to the solution.

(a) Prove it.

§

$$d=0 \land ok \Rightarrow n' = n + d \times (d-1)/2$$
 expand ok

$$d=0 \land n' = n \land d' = d \Rightarrow n' = n + d \times (d-1)/2$$
 use $d=0$ as context in consequent
$$d=0 \land n' = n \land d' = d \Rightarrow n' = n + 0 \times (0-1)/2$$
 arithmetic and specialize
$$d=0 \land n' = n \land d' = d \Rightarrow n' = n + 0 \times (0-1)/2$$

Last case.

$$d>0 \land (d:=d-1. \ n:=n+d. \ n'=n+d\times(d-1)/2)$$
 substitution law twice $d>0 \land n'=n+d-1+(d-1)\times(d-2)/2$ arithmetic $d>0 \land n'=n+d\times(d-1)/2$ specialize

 \implies $n' = n + d \times (d-1)/2$

(b) Insert appropriate time increments according to the recursive measure, and write an appropriate timing specification and refinement.

$$t' = t + d$$
 \leftarrow if $d = 0$ then ok else $d := d - 1$. $n := n + d$. $t := t + 1$. $t' = t + d$ fi

(c) Prove the timing refinement.

$$d=0 \land ok \Rightarrow t' = t+d$$
 expand ok

$$= d=0 \land n'=n \land d'=d \land t'=t \Rightarrow t' = t+d$$
 use antecedent as context in consequent
$$= d=0 \land n'=n \land d'=d \land t'=t \Rightarrow t = t+0$$
 arithmetic and specialize
$$= \top$$

Last case.

$$d>0 \land (d:=d-1. \ n:=n+d. \ t:=t+1. \ t'=t+d)$$
 substitution law 3 times
= $d>0 \land t'=t+1+d-1$ arithmetic
= $d>0 \land t'=t+d$ specialize
 $\Rightarrow t'=t+d$