Let n be a natural variable, and let b be a binary variable. Write a program to determine whether 3 is a factor of n (whether 3 divides evenly into n with no remainder), reporting the answer as the final value of b. Your program can use addition, subtraction, comparison, and binary operators, but not multiplication, division, div, mod, floor, or ceil. (Your non-program specifications can use anything.)

(a) Write a formal specification.
(b) Refine your specification to obtain a program. You do not need to prove the refinements.

After trying the question, scroll down to the solution.
(a) Write a formal specification.
\[b' \equiv (\text{mod } n = 0) \]

(b) Refine your specification to obtain a program. You do not need to prove the refinements.
\[b' \equiv (\text{mod } n = 0) \iff \begin{cases}
\text{if } n < 3 & \text{then } b := (n = 0) \\
\text{else } n := n - 3. & b' \equiv (\text{mod } n = 0) \end{cases} \]