- 165 $(mod \ 4)$ Let *n* be a natural variable. Here is a refinement. $n' = mod \ n \ 4 \iff if \ n < 4 then \ ok else \ n := n-4.$ $n' = mod \ n \ 4 fi$
- (a) Prove it.
- (b) Insert time increments according to the recursive time measure, and write a timing specification.
- (c) Prove the timing refinement.

After trying the question, scroll down to the solution.

(a) Prove it.

§ Proof uses refinement by cases.

	$n' = mod \ n \ 4 \ \leftarrow \ n < 4 \land ok$	expand ok
=	$n' = mod \ n \ 4 \ \Leftarrow \ n < 4 \land n' = n$	context and arithmetic
=	$n'=n \iff n < 4 \land n'=n$	specialization
=	Т	
	$n' = mod \ n \ 4 \ \Leftarrow \ n \ge 4 \land (n := n - 4. \ n' = mod \ n \ 4)$	substitution law
=	$\begin{array}{rcl}n' = mod \; n \; 4 \; \Leftarrow \; n \geq 4 \; \land \; (n \coloneqq n - 4. \; n' = mod \; n \; 4)\\n' = mod \; n \; 4 \; \Leftarrow \; n \geq 4 \; \land \; n' = mod \; (n - 4) \; 4\end{array}$	substitution law context and arithmetic
= =		

Insert time increments according to the recursive time measure, and write a timing (b) specification. §

$$t' = t + div n 4 \iff if n < 4 then ok else n := n - 4. t := t + 1. t' = t + div n 4 fi$$

- Prove the timing refinement. Proof uses refinement by cases. (c)
- §

$$t' = t + div n 4 \iff n < 4 \land ok$$
 expand ok

$$= t' = t + div n 4 \iff n < 4 \land n' = n \land t' = t$$
 context and arithmetic

$$= t' = t + 0 \iff n < 4 \land n' = n \land t' = t$$
 simplify and specialize

$$= T$$

$$t' = t + div n 4 \iff n \ge 4 \land (n := n - 4. t := t + 1. t' = t + div n 4)$$

$$= t' = t + div n 4 \iff n \ge 4 \land t' = t + 1 + div (n - 4) 4$$
 arithmetic

$$= t' = t + div n 4 \iff n \ge 4 \land t' = t + 1 + div (n - 4) 4$$
 specialization

$$= T$$