
162 (cube)  Write a program that cubes using only addition, subtraction, and test for zero.

After trying the question, scroll down to the solution.



§ Let  n  be a natural constant, and let  x  be a natural variable.  Then
xʹ=n3   ⇐   x:= n.  xʹ=x×n.  xʹ=x×n

Proof:
x:= n.  xʹ=x×n.  xʹ=x×n definition of sequential composition

= x:= n.  ∃xʹʹ·  xʹʹ=x×n ∧ xʹ=xʹʹ×n one-point
= x:= n.  xʹ=x×n×n substitution law
= xʹ=n×n×n arithmetic
= xʹ=n3

Now we have only one specification to refine, namely  xʹ=x×n , and it's a multiplication, 
which is easier than cubing.  We'll have to use repeated addition, so we have to start  x  at  
0 , and then keep adding  n .  How many times do we add  n ?  We add it  x  times, but 
that's  x  before we initialized it to  0 .  So we have to save the value of  x  before we 
initialize it to  0 , and we introduce natural variable  y  for that.

xʹ=x×n   ⇐   y:= x.  x:= 0.  xʹ = x + y×n
The last part  xʹ = x + y×n  says the final value  xʹ  is the sum so far, that's  x , plus  y  more 
values of  n .
Proof:

y:= x.  x:= 0.  xʹ = x + y×n substitution law
= y:= x.  xʹ = 0 + y×n simplify, then substitution law
= xʹ = x×n

Now the last refinement is straightforward.
xʹ = x + y×n   ⇐   if y=0 then ok else x:= x+n.  y:= y–1.  xʹ = x + y×n f

Proof:
if y=0 then ok else x:= x+n.  y:= y–1.  xʹ = x + y×n f expand  ok , substitution twice

= if y=0 then xʹ=x ∧ yʹ=y else xʹ = x + n + (y–1)×n f context, simplify
= if y=0 then xʹ = x + y×n ∧ yʹ=y else xʹ = x + y×n f monotonicity
⇒ if y=0 then xʹ = x + y×n else xʹ = x + y×n f case idempotent
= xʹ = x + y×n

Adding recursive time,  we need to put  t:= t+1  just before the recursive call.  Since  t  
goes up  1  just when  y  goes down  1 , we see that the time must be  y .  So that last 
refinement becomes

xʹ = x + y×n ∧ tʹ=t+y   ⇐
if y=0 then ok else x:= x+n.  y:= y–1.  t:= t+1.  xʹ = x + y×n ∧ tʹ=t+y f

We recalculate the refinement of  xʹ=x×n  with timing, and we find
y:= x.  x:= 0.  xʹ = x + y×n ∧ tʹ=t+y

= xʹ=x×n ∧ tʹ=t+x
We recalculate the refinement of  xʹ=n3  with timing, and we find

x:= n.  xʹ=x×n ∧ tʹ=t+x.  xʹ=x×n ∧ tʹ=t+x
= xʹ=n3 ∧ tʹ=t+n2+n
We have calculated the timing for the solution to be  n2+n , which wasn't obvious.

Here's a linear solution in which  n  is a natural variable.  We can try to find  n3  in terms 
of  (n–1)3 .  We find

n3  =  (n–1)3 + 3×n2 – 3×n + 1
The problem is the occurrence of   n2 .  But maybe we can find it the same way, in terms 
of  (n–1)2  using the identity

n2  =  (n–1)2 + 2×n – 1
So we need a variable  x  for the cubes and a variable  y  for the squares.



xʹ=n3   ⇐   xʹ=n3 ∧ yʹ=n2

xʹ=n3 ∧ yʹ=n2   ⇐
          if n=0 then x:= 0.  y:= 0 else n:= n–1.  xʹ=n3 ∧ yʹ=n2.

We cannot complete that refinement due to a little problem:  in order to get the new 
values of  x  and  y , we need not only the values of  x  and  y  just produced by the 
recursive call, but also the original value of  n , which was not saved.  So we revise.

xʹ=n3   ⇐   xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n
xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n   ⇐

if n=0 then x:= 0.  y:= 0
else n:= n–1.  xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n.  n:= n+1.

y:= y + n + n – 1.  x:= x + y + y + y – n – n – n + 1 f
After we decrease  n , the recursive call promises to leave it alone, and then we increase it 
back to its original value, which fulfills the promise.  With recursive time,

xʹ=n3 ∧ tʹ=t+n   ⇐   xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n
xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n   ⇐

if n=0 then x:= 0.  y:= 0
else n:= n–1.  t:= t+1.  xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n.  n:= n+1.

y:= y + n + n – 1.  x:= x + y + y + y – n – n – n + 1 f
The proof is easier if we express the specifications in program form:

x:= n3.  t:= t+n   ⇐   x:= n3.  y:= n2.  t:= t+n
x:= n3.  y:= n2.  t:= t+n   ⇐

if n=0 then x:= 0.  y:= 0
else n:= n–1.  t:= t+1.  x:= n3.  y:= n2.  t:= t+n.  n:= n+1.

y:= y + n + n – 1.  x:= x + y + y + y – n – n – n + 1 f
Now we can use the substitution law more.

Here's another linear solution.  It is similar to the previous solution, calculating  n3  from  
(n–1)3 .  The recursion in the previous solution requires a stack implementation;  the 
recursion in this solution does not require a stack implementation.  This solution uses a 
backward-looking specification.  Let  n  be a natural constant, and let  x  be a natural 
variable.  The result we want is

R   =   xʹ=n3  ∧  tʹ=t+n
We want that result by a sequence of additions to  x .  Let  k  be a natural variable that 
counts up from  0  to  n .  Define

Q   =   x=k3   ⇒   xʹ=n3  ∧  tʹ = t+n–k
to say that, in the middle of the computation, we have already computed  x=k3 , and we 
need to finish computing  xʹ=n3  in time  n–k .  Then

R   ⇐   k:= 0.  x:= 0.  Q
Q   ⇐   if k=n then ok else x:= x+y.  k:= k+1.  t:= t+1.  Q f

where  y  is a value yet to be determined.  The proof of the  R  refinement is two uses of 
the substitution law.  The proof of the  Q  refinement is two cases.  The first case  k=n  is 
easy.  The other case  k<n  is

Q   ⇐   k<n  ∧  (x:= x+y.  k:= k+1.  t:= t+1.  Q) expand second  Q
= Q   ⇐   k<n  ∧  (x:= x+y.  k:= k+1.  t:= t+1.  x=k3   ⇒   xʹ=n3  ∧  tʹ = t+n–k)

substitution 3 times
= Q   ⇐   k<n  ∧  (x+y=(k+1)3   ⇒   xʹ=n3  ∧  tʹ = t+1+n–(k+1)) simplify
= Q   ⇐   k<n  ∧  (x+y = k3 + 3×k2 + 3×k + 1  ⇒   xʹ=n3  ∧  tʹ = t+n–k)

mirror and expand  Q
=        k<n  ∧  (x+y = k3 + 3×k2 + 3×k + 1  ⇒   xʹ=n3  ∧  tʹ = t+n–k)

⇒   (x=k3   ⇒   xʹ=n3  ∧  tʹ = t+n–k)
If we somehow had  y = 3×k2 + 3×k + 1 , then by specialization

= ⊤



So we see what  y  has to be.  Let's just give it to ourselves by modifying  Q .
Q   =   x=k3 ∧  y = 3×k2 + 3×k + 1   ⇒   xʹ=n3  ∧  tʹ = t+n–k

Now we need to modify our refinements to initialize and update natural variable  y .
R   ⇐   k:= 0.  x:= 0.  y:= 1.  Q
Q   ⇐   if k=n then ok else x:= x+y.  y:= y+z.  k:= k+1.  t:= t+1.  Q f

where  z  is a value yet to be determined.  The proof of the  R  refinement is three uses of 
the substitution law.  The proof of the  Q  refinement is two cases.  The first case  k=n  is 
easy.  The other case  k<n  is

Q   ⇐   k<n  ∧  (x:= x+y.  y:= y+z.  k:= k+1.  t:= t+1.  Q) expand second  Q
= Q   ⇐   k<n  ∧  (x:= x+y.  y:= y+z.  k:= k+1.  t:= t+1.

                           x=k3 ∧  y = 3×k2 + 3×k + 1   ⇒   xʹ=n3  ∧  tʹ = t+n–k)
substitution 4 times

= Q   ⇐   k<n  ∧  (       x+y=(k+1)3  ∧  y+z = 3×(k+1)2 + 3×(k+1) + 1
                           ⇒   xʹ=n3  ∧  tʹ = t+1+n–(k+1)) simplify

= Q   ⇐   k<n  ∧  (       x+y = k3 + 3×k2 + 3×k + 1  ∧  y+z = 3×k2 + 9×k + 7
                           ⇒   xʹ=n3  ∧  tʹ = t+n–k) mirror and expand  Q

=        k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7 ⇒  xʹ=n3 ∧ tʹ = t+n–k)
⇒   (x=k3 ∧  y = 3×k2 + 3×k + 1   ⇒   xʹ=n3  ∧  tʹ = t+n–k)

If we somehow had  z = 6×k + 6 , then by specialization
= ⊤
So we see what  z  has to be.  Let's just give it to ourselves by modifying  Q .

Q   =   x=k3  ∧  y = 3×k2 + 3×k + 1  ∧  z = 6×k + 6   ⇒   xʹ=n3  ∧  tʹ = t+n–k
Now we need to modify our refinements to initialize and update natural variable  z .

R   ⇐   k:= n.  x:= 0.  y:= 1.  z:= 6.  Q
Q   ⇐   if k=0 then ok else x:= x+y.  y:= y+z.  z:= z+w.  k:= k–1.  t:= t+1.  Q f

where  w  is a value yet to be determined.  The second case  k<n  of the  Q  refinement is
Q   ⇐   k<n  ∧  (x:= x+y.  y:= y+z.  z:= z+w.  k:= k+1.  t:= t+1.  Q) expand second  Q

and use substitution 5 times and simplify
= Q   ⇐   k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7  ∧  z+w = 6×k + 12

                       ⇒   xʹ=n3  ∧  tʹ = t+n–k) mirror and expand  Q
=        k<n ∧ (      x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7  ∧  z+w = 6×k + 12

                   ⇒  xʹ=n3 ∧ tʹ = t+n–k)
⇒   (x=k3 ∧  y = 3×k2 + 3×k + 1  ∧  z = 6×k + 6   ⇒   xʹ=n3  ∧  tʹ = t+n–k)

If  w = 6 , then by specialization
= ⊤
So we see that  w  has to be  6 .  The solution is

R   ⇐   k:= n.  x:= 0.  y:= 1.  z:= 6.  Q
Q   ⇐   if k=0 then ok else x:= x+y.  y:= y+z.  z:= z+6.  k:= k–1.  t:= t+1.  Q f

The solution is simple and efficient, and we couldn't have found it without using the 
theory.

Here's the same linear solution using a forward-looking  Q , but the recursion requires a 
stack.  Let

Q   =   xʹ=n3  ∧  yʹ = 3×n2 + 3×n + 1  ∧  zʹ = 6×n + 6  ∧  tʹ=t+n
Then

xʹ=n3 ∧ tʹ=t+n   ⇐   Q
Q   ⇐ if n=0 then x:= 0.  y:= 1.  z:= 6

else n:= n–1.  t:= t+1.  Q.  x:= x+y.  y:= y+z.  z:= z+6 f

Now here's the same solution using the invariant for-loop rule in Subsection 5.2.3.  We 
haven't got many operations to work with.  We can try to accumulate a sum, as follows.



xʹ=n3   ⇐   x:= 0.  for k:= 0;..n do x:= x+? od
where the question mark means we don't know what goes here yet.  We define invariant

A k   =   x=k3

Then
xʹ=n3   ⇐   x:= 0.  A 0 ⇒ Aʹn

is easily proven.  Now, for free,
A 0 ⇒ Aʹn   ⇐   for k:= 0;..n do k: 0,..n ∧ A k  ⇒  Aʹ(k+1) od

and what remains is to refine  k: 0,..n ∧ A k  ⇒  Aʹ(k+1) .
k: 0,..n ∧ A k  ⇒  Aʹ(k+1) drop  k: 0,..n  and expand  A k  and  Aʹ(k+1)

⇐ x=k3  ⇒  xʹ=(k+1)3

= x=k3  ⇒  xʹ = k3 + 3×k2 + 3×k + 1 context
= x=k3  ⇒  xʹ = x + 3×k2 + 3×k + 1
⇐ x:= x + 3×k2 + 3×k + 1
Unfortunately, we don't have squaring or multiplication.  So let's just say  x:= x+y  and 
strengthen the invariant  A k  to

A k    =    x=k3  ∧  y  =  3×k2 + 3×k + 1
Now we must revise the initialization

xʹ=n3   ⇐   x:= 0.  y:= 1.  A 0 ⇒ Aʹn
and recalculate the loop body

k: 0,..n  ∧  A k  ⇒  Aʹ(k+1) drop  k: 0,..n  and expand  A k  and  Aʹ(k+1)
⇐ x=k3  ∧  y = 3×k2 + 3×k + 1  ⇒  xʹ=(k+1)3  ∧  yʹ = 3×(k+1)2 + 3×(k+1) + 1
⇐ xʹ = x+y  ∧  yʹ = y + 6×k + 6
= x:= x+y.  y:= y+k+k+k+k+k+k+6
and we're done, but it's a little inelegant to add up  6 k  so let's say  y:= y+z  and 
strengthen  A k  again to

A k   =   x=k3  ∧  y = 3×k2 + 3×k + 1  ∧  z = 6×k + 6
Now we must revise the initialization

xʹ=n3   ⇐   x:= 0.  y:= 1.  z:= 6.  A 0 ⇒ Aʹn
and recalculate the loop body

k: 0,..n  ∧  A k  ⇒  Aʹ(k+1)
⇐ x=k3  ∧  y = 3×k2 + 3×k + 1  ∧  z = 6×k + 6

⇒ xʹ=(k+1)3  ∧  yʹ = 3×(k+1)2 + 3×(k+1) + 1  ∧  zʹ = 6×(k+1) + 6
⇐ xʹ = x+y  ∧  yʹ = y + 6×k + 6  ∧  zʹ = z+6
= x:= x+y.  y:= y+z.  z:= z+6
and we're done again.  Altogether,

xʹ=n3   ⇐   x:= 0.  y:= 1.  z:= 6.  for k:= 0;..n do x:= x+y.  y:= y+z.  z:= z+6 od


