162 (cube) Write a program that cubes using only addition, subtraction, and test for zero.

After trying the question, scroll down to the solution.



Let n be a natural constant, and let x be a natural variable. Then
xX'=n3 <= xi=n. x'=xxn. x'=xxn

Proof:

X:i=n. x'=xxn. x'=xxn definition of sequential composition
= x=n. " xX'"=xxn A x'=x"xn one-point
= xi=n. xX'sxxnxn substitution law
= X'=nxnxn arithmetic
= x=n

Now we have only one specification to refine, namely x'=xxn , and it's a multiplication,
which is easier than cubing. We'll have to use repeated addition, so we have to start x at
0 , and then keep adding n . How many times do we add n ? We add it x times, but
that's x before we initialized it to O . So we have to save the value of x before we
initialize it to O , and we introduce natural variable y for that.
X'=xxn <= y:=x. x:=0. X' =x+ yxn

The last part x' = x + yxn says the final value x’ is the sum so far, that's x , plus y more
values of n .

Proof:

yvi=x. x:=0. X' =x+ yxn substitution law
= y=x.xX=0+yxn simplify, then substitution law
= X' =xxn

Now the last refinement is straightforward.
x'=x+yxn < if y=0 then ok else x:= x+n. y:=y-1. X' =x + yxn fi
Proof:
if y=0 then ok else x:= x+n. y:=y-1. X' =x+ yxnfi expand ok , substitution twice

= ify=Othenx'=x A y'=yelsex'=x+n+ (y—1)xnfi context, simplify
= ify=Othenx' =x+yxn A y'=yelse x' =x + yxn fi monotonicity
= if y=0 then x' = x + yxn else x' = x + yxn fi case idempotent

x'=x+ yxn

Adding recursive time, we need to put #:=t+1 just before the recursive call. Since ¢
goesup 1 just when y goes down 1 , we see that the time must be y . So that last
refinement becomes

X'=x+yxn A t'=t+y <

if y=0 then ok else x:= x+n. y:=y-1. tt=r+1. X' =x+ yxn A t'=t+y fi

We recalculate the refinement of x'=xxn with timing, and we find

yvi=x. x:=0. X' =x+ yxn A t'=t+y
=  x's=xxn A t'=t+x
We recalculate the refinement of x'=n3 with timing, and we find

x:=n. X'=xxn A t'=t+x. x'=xxn A t'=t+x
= xX'=nd3Ar=t+nZ+n
We have calculated the timing for the solution to be n2+n , which wasn't obvious.

Here's a linear solution in which n is a natural variable. We can try to find n3 in terms
of (n-1)3. We find

nd = (n-1)3+3xn?2 - 3xn + 1
The problem is the occurrence of n2 . But maybe we can find it the same way, in terms
of (n—1)? using the identity

n? = (n-1)2+2xn—-1
So we need a variable x for the cubes and a variable y for the squares.



xX'=n3 <= x'=n3 A y'=n?
xX'=n3 A y'=n? <
if n=0 then x:= 0. y:=0 else n:= n—1. x'=n3 A y'=n2.
We cannot complete that refinement due to a little problem: in order to get the new
values of x and y , we need not only the values of x and y just produced by the
recursive call, but also the original value of n , which was not saved. So we revise.
xX'=n3 <= x'=n3 A y'=n?An'=n
X'=n3 Ay'=n2 An'=n <
if n=0 then x:=0. y:=0
else n:=n—1. x'=n3 A y'=n? A n'=n. n:=n+l.
y=y+n+n-1. xi=x+y+y+y-n-n—-n+1fi
After we decrease n , the recursive call promises to leave it alone, and then we increase it
back to its original value, which fulfills the promise. With recursive time,
X'=n3 Atf'=t+n <= x'=n3 A y'=n2 A n'=n A '=t+n
X'=n3 Ay'=n2 An'=nAt=+n <
if n=0 then x:=0. y:=0
else n:=n—1. t=r+1. xX'=n3 A y'=n2 A n'=n A {'=t4+n. n:= n+l.
yv=y+n+n-1. xi=x+y+y+y-n—-n—-n+1fi
The proof is easier if we express the specifications in program form:
x=nd. t=t+tn < x:=nd. y:=n?. £=rt+n
x=nd. y:=n2, t=tn <
if n=0 then x:=0. y:=0
else n:=n-1. t=r+1. x:=nd. y:=n2. t.=r+n. n:=n+l.
yv=y+n+n-1. xi=x+y+y+y-n—-n—-n+1fi
Now we can use the substitution law more.

Here's another linear solution. It is similar to the previous solution, calculating n3 from
(n—1)3 . The recursion in the previous solution requires a stack implementation; the
recursion in this solution does not require a stack implementation. This solution uses a
backward-looking specification. Let n be a natural constant, and let x be a natural
variable. The result we want is
R = x'=n3 A f'=t4n
We want that result by a sequence of additions to x . Let k be a natural variable that
counts up from O to n . Define
QO = x=k3 = x'=n3 A ' =t+n-k
to say that, in the middle of the computation, we have already computed x=k3 , and we
need to finish computing x'=n3 in time n—k . Then
R <= k=0.x=0.0
Q <= ifk=nthen ok else x:= x+y. k:=k+1. t=r+1. Qfi
where y 1is a value yet to be determined. The proof of the R refinement is two uses of
the substitution law. The proof of the Q refinement is two cases. The first case k=n is
easy. The other case k<n is
O <= k<n A (xi=x+y. k=k+1. t:=t+1. Q) expand second Q
QO < k<n A (xi=x+y. k=k+1. t=t+1. x=k3 = x'=n3 A { =r+n-k)
substitution 3 times
0 <= k<n A (x+y=(k+1)3 = x'=n3 A 1 = t+1+n—(k+1)) simplify
QO <= k<n A (x+y=k3 +3xk2+3xk+1 = x'=n3 A { =t+n-k)
mirror and expand Q
= k<n A (x+y=k3+3xk2+3xk+1 = x'=n3 A ¢ =t+n-k)
= (x=k3 = x'=n® A ' =t+n—-k)
If we somehow had y = 3xk? + 3xk + 1 , then by specialization
= 7T



So we see what y has to be. Let's just give it to ourselves by modifying QO .
QO = x=k3A y=3xk2+3xk+1 = x'=n3 A ¢ =t+n-k
Now we need to modify our refinements to initialize and update natural variable y .
R < k=0.x=0.y=1. Q
Q <= ifk=nthen ok else x:= x+y. y:=y+z. ki=k+1. t=r+1. Qfi
where z is a value yet to be determined. The proof of the R refinement is three uses of
the substitution law. The proof of the Q refinement is two cases. The first case k=n 1is
easy. The other case k<n is
QO <= k<n A (xi=x+y. yi=y+z. ki=k+1. t.=t+1. Q) expand second Q
= Q0 = k<n A (xi=x+y. yi=y+z. ki=k+1. t=1+1.
X=k3 A y=3xk2+3xk+1 = x'=n3 A 1 =t+n-k)
substitution 4 times
= Q <« k<n A ( xty=(k+1)3 A y+z=3x(k+1)2 + 3x(k+1) + 1

= x'=n3 At =t+1+n—(k+1)) simplify
= Q <« k<n A ( xty=k3+3xk2+3xk+ 1 A y+z=3xk? +9Ixk +7
= x'=n3 A 1 =t+n-k) mirror and expand Q

= k<n A (x+y = k3 + 3xk2 + 3xk + 1 A y+z7 = 3xk? + Oxk + 7 = x'=n3 A ' = t+n—k)
= (x=k3A y=3xk?+3xk+1 = x'=n3 A { =t+n-k)
If we somehow had z = 6xk + 6 , then by specialization

= 7T
So we see what z has to be. Let's just give it to ourselves by modifying Q .
O = x=k3 A y=3xk2+3xk+1 A z=6xk+6 = x'=n3 A [ =t+n—k

Now we need to modify our refinements to initialize and update natural variable z .
R < k=n. x=0.y=1.z2=6. Q
Q <= if k=0 then ok else x:= x+y. y:=y+z. z=z4+w. ki=k-1. t.=t+1. Qfi
where w is a value yet to be determined. The second case k<n of the Q refinement is
QO <= k<n A (xi=x+y. yi=y+z. zi=z+w. ki=k+1. t:=t+1. Q) expand second Q
and use substitution 5 times and simplify
= Q <« k<nA(@+y=k3+3xk2+3xk+1 A y+z=3xk2+9xk+7 A z+w=6xk + 12
= x'=n3 A ' =+n-k) mirror and expand Q
= k<n A ( x+y=k3+3xkZ2 +3xk+ 1 A y+z2=3xk2+9xk +7 A z+w = 6xk + 12
= x'=n3 A t' = t+n—k)
= (x=k3A y=3xk?+3xk+1 A z=6xk+6 = x'=n3 A ' =t+n-k)
If w=6,then by specialization
= 7T
So we see that w has to be 6. The solution is
R < k=n. x=0.y=1. z2:=6. Q
Q <= if k=0 then ok else x:= x+y. y:=y+z. z:=74+6. ki=k-1. t:=t+1. Ofi
The solution is simple and efficient, and we couldn't have found it without using the
theory.

Here's the same linear solution using a forward-looking Q , but the recursion requires a
stack. Let
O = x'=m3 A y=3xn2+3xn+1 A 77 =6xn+6 A '=t+n
Then
X=m3 Atf'=t+n < Q
QO < ifn=0thenx:=0. y:=1. z:=6
else n:=n—1. tt=t+1. Q. x:=x+y. y:=y+z. zz=z+6 fi

Now here's the same solution using the invariant for-loop rule in Subsection 5.2.3. We
haven't got many operations to work with. We can try to accumulate a sum, as follows.



x'=n3 < x:=0. for k:=0;.ndo x:=x+? od
where the question mark means we don't know what goes here yet. We define invariant
Ak = x=k3
Then
xX=n3 < x=0. A0=An
is easily proven. Now, for free,
A0=A'n < fork=0;.ndok:0,,.nnAk = A'(k+1) od
and what remains is to refine k: 0,,.n A Ak = A'(k+1) .

k:0,,.nAAk = A'(k+1) drop k:0,.n and expand A k and A'(k+1)
< x=k3 = x'=(k+1)3
= x=k3 = xX'=k3+3xk? +3xk + 1 context

x=k3 = x'=x+3xk? +3xk + 1
<< xi=x+3xk?+3xk+ 1
Unfortunately, we don't have squaring or multiplication. So let's just say x:= x+y and
strengthen the invariant A k to
Ak = x=k3 Ay = 3xkZ2+3xk+1
Now we must revise the initialization
xX=n3 <= x=0.y=1. AO=An
and recalculate the loop body
k:0,.n A Ak = A'(k+1) drop k:0,.n and expand A k and A'(k+1)
< x=k3 A y=3xk2+3xk+ 1 = x'=(k+1)3 A y =3x(k+1)? + 3x(k+1) + 1
<— X' =x+ty A Y=y+6xk+6
=  xi=x+y. yi= y+k+kt+k+k+k+k+6
and we're done, but it's a little inelegant to add up 6 k£ so let's say y:= y+z and
strengthen A k again to
Ak = x=k3 A y=3xk2+3xk+1 A z=6xk+6
Now we must revise the initialization
xX=n3 < x:=0.y=1.72=6. A0=A'n
and recalculate the loop body
k:0,.n A Ak = A'(k+1)
<~ x=k3 A y=3xk?+3xk+1 A 7=6xk+6
= x'=(k+1)3 A y' =3x(k+1)2 4+ 3x(k+1) + 1 A 7' =6x(k+1) +6
<— X' =x+y A Y=y+6xk+6 A 7 =27+6
= xi=xty. yi=y+zo 2= 246
and we're done again. Altogether,
xX'=n3 < x:=0. y:=1. z:=6. for k:=0;..ndo x:= x+y. y:= y+z. 7:= z+6 od



