
162 (cube) Write a program that cubes using only addition, subtraction, and test for zero.

After trying the question, scroll down to the solution.

§ Let n be a natural constant, and let x be a natural variable. Then
xʹ=n3 ⇐ x:= n. xʹ=x×n. xʹ=x×n

Proof:
x:= n. xʹ=x×n. xʹ=x×n definition of sequential composition

= x:= n. ∃xʹʹ· xʹʹ=x×n ∧ xʹ=xʹʹ×n one-point
= x:= n. xʹ=x×n×n substitution law
= xʹ=n×n×n arithmetic
= xʹ=n3

Now we have only one specification to refine, namely xʹ=x×n , and it's a multiplication,
which is easier than cubing. We'll have to use repeated addition, so we have to start x at
0 , and then keep adding n . How many times do we add n ? We add it x times, but
that's x before we initialized it to 0 . So we have to save the value of x before we
initialize it to 0 , and we introduce natural variable y for that.

xʹ=x×n ⇐ y:= x. x:= 0. xʹ = x + y×n
The last part xʹ = x + y×n says the final value xʹ is the sum so far, that's x , plus y more
values of n .
Proof:

y:= x. x:= 0. xʹ = x + y×n substitution law
= y:= x. xʹ = 0 + y×n simplify, then substitution law
= xʹ = x×n

Now the last refinement is straightforward.
xʹ = x + y×n ⇐ if y=0 then ok else x:= x+n. y:= y–1. xʹ = x + y×n f

Proof:
if y=0 then ok else x:= x+n. y:= y–1. xʹ = x + y×n f expand ok , substitution twice

= if y=0 then xʹ=x ∧ yʹ=y else xʹ = x + n + (y–1)×n f context, simplify
= if y=0 then xʹ = x + y×n ∧ yʹ=y else xʹ = x + y×n f monotonicity
⇒ if y=0 then xʹ = x + y×n else xʹ = x + y×n f case idempotent
= xʹ = x + y×n

Adding recursive time, we need to put t:= t+1 just before the recursive call. Since t
goes up 1 just when y goes down 1 , we see that the time must be y . So that last
refinement becomes

xʹ = x + y×n ∧ tʹ=t+y ⇐
if y=0 then ok else x:= x+n. y:= y–1. t:= t+1. xʹ = x + y×n ∧ tʹ=t+y f

We recalculate the refinement of xʹ=x×n with timing, and we find
y:= x. x:= 0. xʹ = x + y×n ∧ tʹ=t+y

= xʹ=x×n ∧ tʹ=t+x
We recalculate the refinement of xʹ=n3 with timing, and we find

x:= n. xʹ=x×n ∧ tʹ=t+x. xʹ=x×n ∧ tʹ=t+x
= xʹ=n3 ∧ tʹ=t+n2+n
We have calculated the timing for the solution to be n2+n , which wasn't obvious.

Here's a linear solution in which n is a natural variable. We can try to find n3 in terms
of (n–1)3 . We find

n3 = (n–1)3 + 3×n2 – 3×n + 1
The problem is the occurrence of n2 . But maybe we can find it the same way, in terms
of (n–1)2 using the identity

n2 = (n–1)2 + 2×n – 1
So we need a variable x for the cubes and a variable y for the squares.

xʹ=n3 ⇐ xʹ=n3 ∧ yʹ=n2

xʹ=n3 ∧ yʹ=n2 ⇐
 if n=0 then x:= 0. y:= 0 else n:= n–1. xʹ=n3 ∧ yʹ=n2.

We cannot complete that refinement due to a little problem: in order to get the new
values of x and y , we need not only the values of x and y just produced by the
recursive call, but also the original value of n , which was not saved. So we revise.

xʹ=n3 ⇐ xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n
xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ⇐

if n=0 then x:= 0. y:= 0
else n:= n–1. xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n. n:= n+1.

y:= y + n + n – 1. x:= x + y + y + y – n – n – n + 1 f
After we decrease n , the recursive call promises to leave it alone, and then we increase it
back to its original value, which fulfills the promise. With recursive time,

xʹ=n3 ∧ tʹ=t+n ⇐ xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n
xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n ⇐

if n=0 then x:= 0. y:= 0
else n:= n–1. t:= t+1. xʹ=n3 ∧ yʹ=n2 ∧ nʹ=n ∧ tʹ=t+n. n:= n+1.

y:= y + n + n – 1. x:= x + y + y + y – n – n – n + 1 f
The proof is easier if we express the specifications in program form:

x:= n3. t:= t+n ⇐ x:= n3. y:= n2. t:= t+n
x:= n3. y:= n2. t:= t+n ⇐

if n=0 then x:= 0. y:= 0
else n:= n–1. t:= t+1. x:= n3. y:= n2. t:= t+n. n:= n+1.

y:= y + n + n – 1. x:= x + y + y + y – n – n – n + 1 f
Now we can use the substitution law more.

Here's another linear solution. It is similar to the previous solution, calculating n3 from
(n–1)3 . The recursion in the previous solution requires a stack implementation; the
recursion in this solution does not require a stack implementation. This solution uses a
backward-looking specification. Let n be a natural constant, and let x be a natural
variable. The result we want is

R = xʹ=n3 ∧ tʹ=t+n
We want that result by a sequence of additions to x . Let k be a natural variable that
counts up from 0 to n . Define

Q = x=k3 ⇒ xʹ=n3 ∧ tʹ = t+n–k
to say that, in the middle of the computation, we have already computed x=k3 , and we
need to finish computing xʹ=n3 in time n–k . Then

R ⇐ k:= 0. x:= 0. Q
Q ⇐ if k=n then ok else x:= x+y. k:= k+1. t:= t+1. Q f

where y is a value yet to be determined. The proof of the R refinement is two uses of
the substitution law. The proof of the Q refinement is two cases. The first case k=n is
easy. The other case k<n is

Q ⇐ k<n ∧ (x:= x+y. k:= k+1. t:= t+1. Q) expand second Q
= Q ⇐ k<n ∧ (x:= x+y. k:= k+1. t:= t+1. x=k3 ⇒ xʹ=n3 ∧ tʹ = t+n–k)

substitution 3 times
= Q ⇐ k<n ∧ (x+y=(k+1)3 ⇒ xʹ=n3 ∧ tʹ = t+1+n–(k+1)) simplify
= Q ⇐ k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ⇒ xʹ=n3 ∧ tʹ = t+n–k)

mirror and expand Q
= k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ⇒ xʹ=n3 ∧ tʹ = t+n–k)

⇒ (x=k3 ⇒ xʹ=n3 ∧ tʹ = t+n–k)
If we somehow had y = 3×k2 + 3×k + 1 , then by specialization

= ⊤

So we see what y has to be. Let's just give it to ourselves by modifying Q .
Q = x=k3 ∧ y = 3×k2 + 3×k + 1 ⇒ xʹ=n3 ∧ tʹ = t+n–k

Now we need to modify our refinements to initialize and update natural variable y .
R ⇐ k:= 0. x:= 0. y:= 1. Q
Q ⇐ if k=n then ok else x:= x+y. y:= y+z. k:= k+1. t:= t+1. Q f

where z is a value yet to be determined. The proof of the R refinement is three uses of
the substitution law. The proof of the Q refinement is two cases. The first case k=n is
easy. The other case k<n is

Q ⇐ k<n ∧ (x:= x+y. y:= y+z. k:= k+1. t:= t+1. Q) expand second Q
= Q ⇐ k<n ∧ (x:= x+y. y:= y+z. k:= k+1. t:= t+1.

 x=k3 ∧ y = 3×k2 + 3×k + 1 ⇒ xʹ=n3 ∧ tʹ = t+n–k)
substitution 4 times

= Q ⇐ k<n ∧ (x+y=(k+1)3 ∧ y+z = 3×(k+1)2 + 3×(k+1) + 1
 ⇒ xʹ=n3 ∧ tʹ = t+1+n–(k+1)) simplify

= Q ⇐ k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7
 ⇒ xʹ=n3 ∧ tʹ = t+n–k) mirror and expand Q

= k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7 ⇒ xʹ=n3 ∧ tʹ = t+n–k)
⇒ (x=k3 ∧ y = 3×k2 + 3×k + 1 ⇒ xʹ=n3 ∧ tʹ = t+n–k)

If we somehow had z = 6×k + 6 , then by specialization
= ⊤
So we see what z has to be. Let's just give it to ourselves by modifying Q .

Q = x=k3 ∧ y = 3×k2 + 3×k + 1 ∧ z = 6×k + 6 ⇒ xʹ=n3 ∧ tʹ = t+n–k
Now we need to modify our refinements to initialize and update natural variable z .

R ⇐ k:= n. x:= 0. y:= 1. z:= 6. Q
Q ⇐ if k=0 then ok else x:= x+y. y:= y+z. z:= z+w. k:= k–1. t:= t+1. Q f

where w is a value yet to be determined. The second case k<n of the Q refinement is
Q ⇐ k<n ∧ (x:= x+y. y:= y+z. z:= z+w. k:= k+1. t:= t+1. Q) expand second Q

and use substitution 5 times and simplify
= Q ⇐ k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7 ∧ z+w = 6×k + 12

 ⇒ xʹ=n3 ∧ tʹ = t+n–k) mirror and expand Q
= k<n ∧ (x+y = k3 + 3×k2 + 3×k + 1 ∧ y+z = 3×k2 + 9×k + 7 ∧ z+w = 6×k + 12

 ⇒ xʹ=n3 ∧ tʹ = t+n–k)
⇒ (x=k3 ∧ y = 3×k2 + 3×k + 1 ∧ z = 6×k + 6 ⇒ xʹ=n3 ∧ tʹ = t+n–k)

If w = 6 , then by specialization
= ⊤
So we see that w has to be 6 . The solution is

R ⇐ k:= n. x:= 0. y:= 1. z:= 6. Q
Q ⇐ if k=0 then ok else x:= x+y. y:= y+z. z:= z+6. k:= k–1. t:= t+1. Q f

The solution is simple and efficient, and we couldn't have found it without using the
theory.

Here's the same linear solution using a forward-looking Q , but the recursion requires a
stack. Let

Q = xʹ=n3 ∧ yʹ = 3×n2 + 3×n + 1 ∧ zʹ = 6×n + 6 ∧ tʹ=t+n
Then

xʹ=n3 ∧ tʹ=t+n ⇐ Q
Q ⇐ if n=0 then x:= 0. y:= 1. z:= 6

else n:= n–1. t:= t+1. Q. x:= x+y. y:= y+z. z:= z+6 f

Now here's the same solution using the invariant for-loop rule in Subsection 5.2.3. We
haven't got many operations to work with. We can try to accumulate a sum, as follows.

xʹ=n3 ⇐ x:= 0. for k:= 0;..n do x:= x+? od
where the question mark means we don't know what goes here yet. We define invariant

A k = x=k3

Then
xʹ=n3 ⇐ x:= 0. A 0 ⇒ Aʹn

is easily proven. Now, for free,
A 0 ⇒ Aʹn ⇐ for k:= 0;..n do k: 0,..n ∧ A k ⇒ Aʹ(k+1) od

and what remains is to refine k: 0,..n ∧ A k ⇒ Aʹ(k+1) .
k: 0,..n ∧ A k ⇒ Aʹ(k+1) drop k: 0,..n and expand A k and Aʹ(k+1)

⇐ x=k3 ⇒ xʹ=(k+1)3

= x=k3 ⇒ xʹ = k3 + 3×k2 + 3×k + 1 context
= x=k3 ⇒ xʹ = x + 3×k2 + 3×k + 1
⇐ x:= x + 3×k2 + 3×k + 1
Unfortunately, we don't have squaring or multiplication. So let's just say x:= x+y and
strengthen the invariant A k to

A k = x=k3 ∧ y = 3×k2 + 3×k + 1
Now we must revise the initialization

xʹ=n3 ⇐ x:= 0. y:= 1. A 0 ⇒ Aʹn
and recalculate the loop body

k: 0,..n ∧ A k ⇒ Aʹ(k+1) drop k: 0,..n and expand A k and Aʹ(k+1)
⇐ x=k3 ∧ y = 3×k2 + 3×k + 1 ⇒ xʹ=(k+1)3 ∧ yʹ = 3×(k+1)2 + 3×(k+1) + 1
⇐ xʹ = x+y ∧ yʹ = y + 6×k + 6
= x:= x+y. y:= y+k+k+k+k+k+k+6
and we're done, but it's a little inelegant to add up 6 k so let's say y:= y+z and
strengthen A k again to

A k = x=k3 ∧ y = 3×k2 + 3×k + 1 ∧ z = 6×k + 6
Now we must revise the initialization

xʹ=n3 ⇐ x:= 0. y:= 1. z:= 6. A 0 ⇒ Aʹn
and recalculate the loop body

k: 0,..n ∧ A k ⇒ Aʹ(k+1)
⇐ x=k3 ∧ y = 3×k2 + 3×k + 1 ∧ z = 6×k + 6

⇒ xʹ=(k+1)3 ∧ yʹ = 3×(k+1)2 + 3×(k+1) + 1 ∧ zʹ = 6×(k+1) + 6
⇐ xʹ = x+y ∧ yʹ = y + 6×k + 6 ∧ zʹ = z+6
= x:= x+y. y:= y+z. z:= z+6
and we're done again. Altogether,

xʹ=n3 ⇐ x:= 0. y:= 1. z:= 6. for k:= 0;..n do x:= x+y. y:= y+z. z:= z+6 od

