Let n be a natural constant, and let x be a natural variable. Then
\[x' = n^3 \iff x := n. \quad x' = x \times n. \quad x' = x \times n \]

Proof:
\[
x := n. \quad x' = x \times n. \quad x' = x \times n \quad \text{definition of sequential composition}
\]
\[
\equiv x := n. \quad \exists x'. \quad x' = x \times n \land x' = x' \times n \quad \text{one-point}
\]
\[
\equiv x := n. \quad x' = x \times n \times n \quad \text{substitution law}
\]
\[
\equiv x' = n \times x \times n \quad \text{arithmetic}
\]
\[
\equiv x' = n^3
\]

Now we have only one specification to refine, namely $x' = x \times n$, and it's a multiplication, which is easier than cubing. We'll have to use repeated addition, so we have to start x at 0, and then keep adding n. How many times do we add n? We add it x times, but that's x before we initialized it to 0. So we have to save the value of x before we initialize it to 0, and we introduce natural variable y for that.
\[
x' = x + y \times n \quad \text{says the final value } x' \text{ is the sum so far, that's } x, \text{ plus } y \text{ more values of } n.
\]

Proof:
\[
y := x. \quad x := 0. \quad x' = x + y \times n \quad \text{substitution law}
\]
\[
\equiv y := x. \quad x' = 0 + y \times n \quad \text{simplify, then substitution law}
\]
\[
\equiv x' = x \times n
\]

Now the last refinement is straightforward.
\[
x' = x + y \times n \iff \text{if } y = 0 \text{ then ok else } x := x + n. \quad y := y - 1. \quad x' = x + y \times n \quad \text{fi}
\]

Proof:
\[
\text{if } y = 0 \text{ then ok else } x := x + n. \quad y := y - 1. \quad x' = x + y \times n \quad \text{fi} \quad \text{expand ok, substitution twice}
\]
\[
\equiv \text{if } y = 0 \text{ then } x' = x \land y = y \text{ else } x' = x + n + (y - 1) \times n \quad \text{context, simplify}
\]
\[
\equiv \text{if } y = 0 \text{ then } x' = x + y \times n \land y = y \text{ else } x' = x + y \times n \quad \text{monotonicity}
\]
\[
\equiv \text{if } y = 0 \text{ then } x' = x + y \times n \text{ else } x' = x + y \times n \quad \text{case idempotent}
\]
\[
\equiv x' = x + y \times n
\]

Adding recursive time, we need to put $t := t + 1$ just before the recursive call. Since t goes up 1 just when y goes down 1, we see that the time must be y. So that last refinement becomes
\[
x' = x + y \times n \land t' = t + y
\]

We recalculate the refinement of $x' = x \times n$ with timing, and we find
\[
y := x. \quad x := 0. \quad x' = x + y \times n \land t' = t + y
\]
\[
\equiv x' = x \times n \land t' = t + x
\]

We recalculate the refinement of $x' = n^3$ with timing, and we find
\[
x := n. \quad x' = x \times n \land t' = t + x. \quad x' = x \times n \land t' = t + x
\]
\[
\equiv x' = n^3 \land t' = t + n^2 + n
\]

We have calculated the timing for the solution to be $n^2 + n$, which wasn't obvious.

Here's a linear solution in which n is a natural variable. We can try to find n^3 in terms of $(n-1)^3$. We find
\[
n^3 = (n-1)^3 + 3n^2 - 3n + 1
\]

The problem is the occurrence of n^2. But maybe we can find it the same way, in terms of $(n-1)^2$ using the identity
\[
n^2 = (n-1)^2 + 2n - 1
So we need a variable x for the cubes and a variable y for the squares.

\[x' = n^3 \iff x' = n^3 \land y' = n^2 \]
\[x' = n^3 \land y' = n^2 \iff \]
if $n=0$ then $x:=0$, $y:=0$ else $n:=n-1$. $x' = n^3 \land y' = n^2$.

We cannot complete that refinement due to a little problem: in order to get the new values of x and y, we need not only the values of x and y just produced by the recursive call, but also the original value of n, which was not saved. So we revise.

\[x' = n^3 \iff x' = n^3 \land y' = n^2 \land n'=n \]
\[x' = n^3 \land y' = n^2 \land n'=n \iff \]
if $n=0$ then $x:=0$, $y:=0$
else $n:=n-1$. $x' = n^3 \land y' = n^2 \land n'=n$. $n:=n+1$.
\[y:=y+n+n-1. \quad x:=x+y+y-n-n-n+1 \]

After we decrease n, the recursive call promises to leave it alone, and then we increase it back to its original value, which fulfills the promise. With recursive time,

\[x' = n^3 \land t'=t+n \iff x' = n^3 \land y' = n^2 \land n'=n \land t'=t+n \]
\[x' = n^3 \land y' = n^2 \land n'=n \land t'=t+n \iff \]
if $n=0$ then $x:=0$, $y:=0$
else $n:=n-1$. $t:=t+1$. $x' = n^3 \land y' = n^2 \land n'=n \land t'=t+n$. $n:=n+1$.
\[y:=y+n+n-1. \quad x:=x+y+y-n-n-n+1 \]

The proof is easier if we express the specifications in program form:

\[x:=n^3. \quad t:=t+n \iff x:=n^3. \quad y:=n^2. \quad t:=t+n \]
\[x:=n^3. \quad y:=n^2. \quad t:=t+n \iff \]
if $n=0$ then $x:=0$, $y:=0$
else $n:=n-1$. $t:=t+1$. $x:=n^3$. $y:=n^2$. $t:=t+n$. $n:=n+1$.
\[y:=y+n+n-1. \quad x:=x+y+y-n-n-n+1 \]

Now we can use the substitution law more.

Here's another linear solution. It is similar to the previous solution, calculating n^3 from $(n-1)^3$. The recursion in the previous solution requires a stack implementation; the recursion in this solution does not require a stack implementation. This solution uses a backward-looking specification. Let n be a natural constant, and let x be a natural variable. The result we want is

\[R \iff x'=n^3 \land t'=t+n \]

We want that result by a sequence of additions to x. Let k be a natural variable that counts up from 0 to n. Define

\[Q \iff x=k^3 \implies x'=n^3 \land t'=t+n-k \]

to say that, in the middle of the computation, we have already computed $x=k^3$, and we need to finish computing $x'=n^3$ in time $n-k$. Then

\[R \iff k:=0. \quad x:=0. \quad Q \]
\[Q \iff \text{if } k=n \text{ then ok else } x:=x+y. \quad k:=k+1. \quad t:=t+1. \quad Q \text{ fi} \]

where y is a value yet to be determined. The proof of the R refinement is two uses of the substitution law. The proof of the Q refinement is two cases. The first case $k=n$ is easy. The other case $k<n$ is

\[Q \iff k<n \land (x:=x+y. \quad k:=k+1. \quad t:=t+1. \quad Q) \quad \text{expand second } Q \]
\[= Q \iff k<n \land (x:=x+y. \quad k:=k+1. \quad t:=t+1. \quad x=k^3 \implies x'=n^3 \land t'=t+n-k) \quad \text{substitution 3 times} \]
\[= Q \iff k<n \land (x+y=(k+1)^3 \implies x'=n^3 \land t'=t+1+n-(k+1)) \quad \text{simplify} \]
\[= Q \iff k<n \land (x+y=k^3+3\times k^2+3\times k+1 \implies x'=n^3 \land t'=t+n-k) \quad \text{mirror and expand } Q \]
\[\iff k<n \land (x+y=k^3+3\times k^2+3\times k+1 \implies x'=n^3 \land t'=t+n-k) \]
\[\iff x=k^3 \implies x'=n^3 \land t'=t+n-k \]

If we somehow had $y=3\times k^2+3\times k+1$, then by specialization
haven't got many operations to work with. We can try to accumulate a sum, as follows.

Here's the same linear solution using a forward-looking

\[
\begin{align*}
Q & \Leftarrow k=0. \ x:=0. \ y:=1. \ Q \\
R & \Leftarrow \begin{cases}
\text{if } k=n \text{ then } & x:=x+y. \ y:=y+z. \ k:=k+1. \ t:=t+1. \ Q \text{ fi} \\
\text{else } & x:=x+y. \ y:=y+z. \ k:=k+1. \ t:=t+1. \ Q \text{ fi}
\end{cases}
\end{align*}
\]
where \(z \) is a value yet to be determined. The proof of the \(R \) refinement is three uses of the substitution law. The proof of the \(Q \) refinement is two cases. The first case \(k=n \) is easy. The other case \(k<n \) is

\[
\begin{align*}
Q & \Leftarrow k<n \land (x:=x+y. \ y:=y+z. \ k:=k+1. \ t:=t+1. \ Q) \quad \text{expand second } Q \\
& \Rightarrow k<n \land (x:=x+y. \ y:=y+z. \ k:=k+1. \ t:=t+1. \\
& \quad \land x=k^3 \land y=3xk^2+3xk+1 \Rightarrow x'=n^3 \land t'=t+n-k)
\end{align*}
\]
substitution 4 times

\[
\begin{align*}
Q & \Leftarrow k<n \land (x+y=k^3+3xk^2+3xk+1 \land y+z=3xk^2+9xk+7) \\
& \Rightarrow x'=n^3 \land t'=t+n-k
\end{align*}
\]
mirror and expand \(Q \)

\[
\begin{align*}
& \Rightarrow (x=k^3 \land y=3xk^2+3xk+1 \Rightarrow x'=n^3 \land t'=t+n-k) \\
& \text{If we somehow had } z=6xk+6, \text{ then by specialization}
\end{align*}
\]

So we see what \(z \) has to be. Let's just give it to ourselves by modifying \(Q \).

\[
\begin{align*}
Q & \Leftarrow x=k^3 \land y=3xk^2+3xk+1 \land z=6xk+6 \Rightarrow x'=n^3 \land t'=t+n-k
\end{align*}
\]
Now we need to modify our refinements to initialize and update natural variable \(z \).

\[
\begin{align*}
R & \Leftarrow k:=n. \ x:=0. \ y:=1. \ z:=6. \ Q \\
Q & \Leftarrow \begin{cases}
\text{if } k=0 \text{ then } & x:=x+y. \ y:=y+z. \ z:=z+w. \ k:=k+1. \ t:=t+1. \ Q \text{ fi} \\
\text{else } & x:=x+y. \ y:=y+z. \ k:=k+1. \ t:=t+1. \ Q \text{ fi}
\end{cases}
\end{align*}
\]
where \(w \) is a value yet to be determined. The second case \(k<n \) of the \(Q \) refinement is

\[
\begin{align*}
& \Rightarrow k<n \land (x:=x+y. \ y:=y+z. \ z:=z+w. \ k:=k+1. \ t:=t+1. \ Q) \quad \text{expand second } Q \\
& \text{and use substitution 5 times and simplify}
\end{align*}
\]

\[
\begin{align*}
& \Rightarrow k<n \land (x+y=k^3+3xk^2+3xk+1 \land y+z=3xk^2+9xk+7 \land z+w=6xk+12) \\
& \Rightarrow x'=n^3 \land t'=t+n-k
\end{align*}
\]
mirror and expand \(Q \)

\[
\begin{align*}
& \Rightarrow (x=k^3 \land y=3xk^2+3xk+1 \land z=6xk+6 \Rightarrow x'=n^3 \land t'=t+n-k) \\
& \text{If } w=6, \text{ then by specialization}
\end{align*}
\]

So we see that \(w \) has to be 6. The solution is

\[
\begin{align*}
R & \Leftarrow k:=n. \ x:=0. \ y:=1. \ z:=6. \ Q \\
Q & \Leftarrow \begin{cases}
\text{if } k=0 \text{ then } & x:=x+y. \ y:=y+z. \ z:=z+6. \ k:=k+1. \ t:=t+1. \ Q \text{ fi} \\
\text{else } & n:=n-1. \ t:=t+1. \ Q. \ x:=x+y. \ y:=y+z. \ z:=z+6 \text{ fi}
\end{cases}
\end{align*}
\]

The solution is simple and efficient, and we couldn't have found it without using the theory.

Here's the same linear solution using a forward-looking \(Q \), but the recursion requires a stack. Let

\[
\begin{align*}
Q & \Leftarrow x'=n^3 \land y'=3xn^2+3xn+1 \land z'=6xn+6 \land t'=t+n
\end{align*}
\]
Then

\[
\begin{align*}
x'=n^3 \land t'=t+n & \Leftarrow Q \\
Q & \Leftarrow \begin{cases}
\text{if } n=0 \text{ then } x:=0. \ y:=1. \ z:=6 \\
\text{else } n:=n-1. \ t:=t+1. \ Q \ x:=x+y. \ y:=y+z. \ z:=z+6 \text{ fi}
\end{cases}
\end{align*}
\]
Now here's the same solution using the invariant for-loop rule in Subsection 5.2.3. We haven't got many operations to work with. We can try to accumulate a sum, as follows.
\[x' = n^3 \iff x := 0. \quad \textbf{for} \ k := 0;..;n \ \textbf{do} \ x := x+? \ \textbf{od} \]

where the question mark means we don't know what goes here yet. We define invariant
\[A \ k \quad \Rightarrow \quad x = k^3 \]

Then
\[x' = n^3 \iff x := 0. \quad A \ 0 \Rightarrow A' \ n \]
is easily proven. Now, for free,
\[A \ 0 \Rightarrow A' \ n \quad \iff \quad \textbf{for} \ k := 0;..;n \ \textbf{do} \ k := 0;..;n \land A \ k \Rightarrow A'(k+1) \ \textbf{od} \]

and what remains is to refine \(k := 0;..;n \land A \ k \Rightarrow A'(k+1) \)
\[k := 0;..;n \land A \ k \Rightarrow A'(k+1) \quad \text{drop} \ k := 0;..;n \text{ and expand} \ A \ k \text{ and} \ A'(k+1) \]
\[\iff \quad x = k^3 \Rightarrow x' = (k+1)^3 \quad \text{context} \]
\[\iff \quad x = k^3 \Rightarrow x' = x^3 + 3x^2k + 3xk + 1 \]
\[\iff \quad x := x + 3x^2k + 3xk + 1 \]

Unfortunately, we don't have squaring or multiplication. So let's just say \(x := x + y \) and strengthen the invariant \(A \ k \) to
\[A \ k \quad \Rightarrow \quad x = k^3 \land y = 3x^2k + 3xk + 1 \]

Now we must revise the initialization
\[x' = n^3 \iff x := 0. \quad y := 1. \quad A \ 0 \Rightarrow A' \ n \]

and recalculate the loop body
\[k := 0;..;n \land A \ k \Rightarrow A'(k+1) \quad \text{drop} \ k := 0;..;n \text{ and expand} \ A \ k \text{ and} \ A'(k+1) \]
\[\iff \quad x = k^3 \land y = 3x^2k + 3xk + 1 \Rightarrow x' = (k+1)^3 \land y' = 3x(k+1)^2 + 3x(k+1) + 1 \]
\[\iff \quad x := x + y. \quad y := y + 3xk + 6 \]
\[\iff \quad x := x + y. \quad y := y + 3xk + 6 \]

and we're done, but it's a little inelegant to add up \(6k \) so let's say \(y := y + z \) and strengthen \(A \ k \) again to
\[A \ k \quad \Rightarrow \quad x = k^3 \land y = 3x^2k + 3xk + 1 \land z = 6xk + 6 \]

Now we must revise the initialization
\[x' = n^3 \iff x := 0. \quad y := 1. \quad z := 6. \quad A \ 0 \Rightarrow A' \ n \]

and recalculate the loop body
\[k := 0;..;n \land A \ k \Rightarrow A'(k+1) \]
\[\iff \quad x = k^3 \land y = 3x^2k + 3xk + 1 \land z = 6xk + 6 \]
\[\iff \quad x' = (k+1)^3 \land y' = 3x(k+1)^2 + 3x(k+1) + 1 \land z' = 6x(k+1) + 6 \]
\[\iff \quad x := x + y. \quad y := y + 3xk + 6 \land z := z + 6 \]
\[\iff \quad x := x + y. \quad y := y + z. \quad z := z + 6 \]

and we're done again. Altogether,
\[x' = n^3 \iff x := 0. \quad y := 1. \quad z := 6. \quad \textbf{for} \ k := 0;..;n \ \textbf{do} \ x := x + y. \quad y := y + z. \quad z := z + 6 \ \textbf{od} \]