159 Let n and r be natural variables in the refinement
P <= ifn=1thenr=0elseni=divn2. P. r=r+lfi
Suppose the operations div and + each take time 1 and all else is free (even the call is
free). Insert appropriate time increments, and find an appropriate P to express the
execution time in terms of
(a) the initial values of the memory variables. Prove the refinement for your choice of P .
(b) the final values of the memory variables. Prove the refinement for your choice of P .

After trying the question, scroll down to the solution.



(@)

the initial values of the memory variables. Prove the refinement for your choice of P .

With time increments added, I must prove
P < ifn=1thenr=0else :=r+1. ni=divn?2. P. t=t+1. ri=r+l1 fi
How should we choose P ? Execution of P proceeds as follows. If n is initially O ,
then n is divided by 2 , making it again 0 , and we are in an infinite loop. If n is
initially positive, then it is repeatedly divided by 2 (rounding down) until it becomes 1,
then r is assigned O ,then r is incremented as many times as n was divided by 2 .
The number of times 7 is divided by 2 until it becomes 1 is the logarithm (base 2 ) of
n . This may not be obvious, so I can easily code this procedure in any implemented
programming language I like, and run it for a variety of initial values for » and r and
for initial time O , and see that the final value of 7 is 2 x floor (log n) . So P can be
(n=0 = t'=2) A (n>0 =1 =1+ 2 x floor (log n))
But floor is an awkward function to work with, so I'll get rid of it by replacing the exact
time with an upper bound. My choice of P is
(n=0 = t'=0) A (>0 =1 <t+2xlogn)
I prove it in parts (each conjunct separately), and I prove each part by cases.
First part, first case:

(n=0 = '=0) <= n=1A(r=0) portation
n=0 A n=1 A (r:=0) = t'=x

LA@r=0) = =

1 = t'=x

T

First part, last case:

(n=0 = t'=0) <= n*l A (t=t+]l. ni=divn?2. n=0=t'=o. t:=t+1. ri=r+1)
portation and expand final assignment
= n=0 A n¥l A (t:=t+1. ni=divn 2. n=0 = t'=0. t:=t+1. r'=r+1 A n'=n A '=t)

= f'=© simplify, and substitution law in two parts
= n=0 A (divn2=0 = '=w. r'=r+1 A n'=n A t'=t+1)

= f'=© eliminate sequential composition
= n=0 A @r'",n",t" (divn2=0 = {'=0) A r'=r"+1 A n'=n"" A '=t"+1)

= ('=0 context: n=0
= n=0 A 3r'",n", " t'=0 Ar'=r"+1 A n'=n" A '=t"+1) = =0 one-point
= n=0 A t'=0041 = ('= absorption and specialization
= 7T

Last part, first case:

m>0=1t=<t+2xlogn) <= n=1nA(r:=0) portation and expand assignment
= n=lArs0an=nnatf=t = <t+2xlogn context, and log 1 =0
= 7T

Last part, last case:

(m>0=1<t+2xlogn)
= nFlA(t=r+l. ni=divn2. n>0=1 <t+2xlogn. t=t+1. r:i=r+l)
portation and expand final assignment
= ' <t+2xlogn
<= >l A@=t+l.ni=divn2.n>0 =1 <t+2xlog n.t:=t+1.r'=r+1 A n'=nnat'=t)



(b)

substitution law in two parts
= ' <t+2xlogn
= n>1 A(divn2>0=1 <t+1+ 2 x log(divn 2). r'=r+1 A n'=n A '=t+1)
eliminate sequential composition
= ' <t+2xlogn
<= mw>la@',n", 1" (divn2>0=1"<t+1+ 2 x log(div n 2))
A r'=r'"+1 A n'=n"" A =t"+1)  one-point for n"" and "’
= ' <t+2xlogn
<= mw>lA@r divn2>0=1t <t+2+ 2 x log(divn 2)) A r'=r'"+1)
in preparation for one-point, rewrite r'=r""+1 and make r'’: nat an explicit conjunct
= ' <t+2xlogn
< >l A@r':nat (divn2>0 =t <t+2+ 2 x log(divn 2)) A r''=r'=1 A r'": nat)
now use one-point
= {=<t+2xlogn = n>1Adivh2>0=1 <t+2+2xlog(divn?2))n (r'-1: nat)
simplify divn2>0
= {=t+2xlogn = n>lArzla(m>l =1 <t+2+2xlog(divn?2))
use the conjunct n>1 to discharge the antecedent n>1
= {=t+2xlogn = n>1Arzl A t'<t+2+2xlog(divn?)
increase divn?2 to n/2
this will increase t + 2 + 2 x log(div n 2)
this will weaken ' <t+ 2 + 2 x log(div n 2)
this will weaken n>1 A r'z1 A ' <t+2+2 x log(divn?2)
this will strengthen ¢ <t+2xlogn <= n>1 Ar'zl A ' <t+2+2xlog(divn?2)
so we need to put <= in the left margin
' <t+2xlogn <= n>1 Arzl A ' <t+2+2xlog(n/2) drop r'>1
this will weaken n>1 A r'=1 A ' <t+2+2 xlog(n/2)
this will strengthen ' <t+2xlogn <= n>1 Ar'z1 A ' <t+2+ 2 xlog(n/2)
so again we need to put <= in the left margin

f

< t'<t+2xlogn <= n>1 A ' <t+2+2xlog(n/2) simplify
= {=<t+2xlogn = n>lat'<t+2xlogn specialization
= 7T

the final values of the memory variables. Prove the refinement for your choice of P .

I prove
' =t+2xr' <= if n=1 then r:=0
elser=r+1. m=divn2. t =t2xr'. t=t+1. ri=r+1 fi
by cases. First case:

' =t+2xr' <= n=1 A (r:=0) expand assignment
= '=t2xr'" <= n=l Ar'=0An'=nnat=t
= 7T
Last case:

' =t42xr'" <= nxl A (t=t+]l. mi=divn2. ' =t+2xr'. t=1+1. ri=r+l)
expand final assignment
! =t42xr' <= n¥l A (t=t+1.n:i=divn 2.t = t+2xr'. t.=t+1.r'=r+1 A n'=n A '=t)
substitution law in two parts
t'=t+2xr' <= n*l A (¢ = t+142xr". r'=r+1 A n'=n A t'=t+1) one-point
' =t42xr' <= n¥l A '= t4242x(r'-1) specialization
T



