Let the variables be \(x \) and \(y \), both natural, and let \(n \) be a natural constant. Then

\[
\begin{align*}
 x' &= n^3 \iff x := n. \ x' &= x \times n. \ x' &= x \times n \\
 x' &= x + n \iff y := x. \ x := 0. \ x' &= x + y \times n \\
 x' &= x + y \times n \iff \text{if } y = 0 \text{ then ok else } x := x + n. \ y := y - 1. \ x' &= x + y \times n \text{ fi}
\end{align*}
\]

Adding recursive time,

\[
\begin{align*}
 x' &= n^3 \land t' = t + n^2 + n \iff x := n. \ x' &= x \times n \land t' = t + x. \ x' &= x \times n \land t' = t + x \\
 x' &= x + n \land t' = t + x \iff y := x. \ x := 0. \ x' &= x + y \times n \land t' = t + y \\
 x' &= x + y \times n \land t' = t + y \iff \text{if } y = 0 \text{ then ok else } x := x + n. \ y := y - 1. \ t := t + 1. \ x' &= x + y \times n \land t' = t + y \text{ fi}
\end{align*}
\]

Here's a linear solution in which \(n \) is a natural variable. We can try to find \(n^3 \) in terms of \((n - 1)^3\). We find

\[
n^3 = (n - 1)^3 + 3 \times n^2 - 3 \times n + 1
\]

The problem is the occurrence of \(n^2 \). But maybe we can find it the same way, in terms of \((n - 1)^2\) using the identity

\[
n^2 = (n - 1)^2 + 2 \times n - 1
\]

So we need a variable \(x \) for the cubes and a variable \(y \) for the squares.

\[
\begin{align*}
 x' &= n^3 \iff x' &= n^3 \land y' &= n^2 \\
 x' &= n^3 \land y' &= n^2 \iff \text{if } n = 0 \text{ then } x := 0. \ y := 0 \text{ else } n := n - 1. \ x' &= n^3 \land y' &= n^2 \\
 \end{align*}
\]

We cannot complete that refinement due to a little problem: in order to get the new values of \(x \) and \(y \), we need not only the values of \(x \) and \(y \) just produced by the recursive call, but also the original value of \(n \), which was not saved. So we revise.

\[
\begin{align*}
 x' &= n^3 \iff x' &= n^3 \land y' &= n^2 \land n' &= n \\
 x' &= n^3 \land y' &= n^2 \land n' &= n \iff \text{if } n = 0 \text{ then } x := 0. \ y := 0 \\
 \text{else } n := n - 1. \ x' &= n^3 \land y' &= n^2 \land n' &= n. \ n := n + 1. \\
 y := y + n + n - 1. \ x := x + y + y + y + n - n - n + 1 \text{ fi}
\end{align*}
\]

After we decrease \(n \), the recursive call promises to leave it alone, and then we increase it back to its original value, which fulfills the promise. With recursive time,

\[
\begin{align*}
 x' &= n^3 \land t' = t + n \iff x' &= n^3 \land y' &= n^2 \land n' &= n \land t' = t + n \\
 x' &= n^3 \land y' &= n^2 \land n' &= n \land t' = t + n \iff \text{if } n = 0 \text{ then } x := 0. \ y := 0 \\
 \text{else } n := n - 1. \ t := t + 1. \ x' &= n^3 \land y' &= n^2 \land n' &= n \land t' = t + n. \ n := n + 1. \\
 y := y + n + n - 1. \ x := x + y + y + y + n - n - n + 1 \text{ fi}
\end{align*}
\]

Now here's a solution using a for-loop according to the invariant rule in Chapter 5. We haven't got many operations to work with. We can try to accumulate a sum, as follows.

\[
x' &= n^3 \iff x := 0. \text{ for } k := 0; \ldots; n \text{ do } x := x + y \text{ od}
\]

We need conditions \(I_k \) such that

\[
\begin{align*}
 I_0 & \iff x := 0 \\
 k : 0; \ldots; n \land I_k & \Rightarrow I_{k + 1} \iff x := x + ? \\
 x' &= n^3 \iff I_n
\end{align*}
\]

From the first and last criteria, it seems clear we need

\[
I_k \equiv x = k^3
\]

Now we can find the question mark.

\[
\begin{align*}
 k : 0; \ldots; n \land I_k & \Rightarrow I_{k + 1} \\
 & \equiv k : 0; \ldots; n \land x = k^3 \Rightarrow x' = (k + 1)^3 \\
 & \equiv k : 0; \ldots; n \land x = k^3 \Rightarrow x' = k^3 + 3 \times k^2 + 3 \times k + 1 \\
 & \iff x := x + 3 \times k + 3 \times k + 1
\end{align*}
\]

Unfortunately, we don't have squaring or multiplication. So let's just say \(x := x + y \) and strengthen \(I \) to
Here's a solution with a less obscure loop specification. Let
\[
I_k \iff x = k^3 \land y = 3xk^2 + 3xk + 1
\]
Now we must revise the initialization
\[
I_0 \iff x := 0. \ y := 1
\]
and recalculate the loop body
\[
k := 0..n \land I_k \Rightarrow I'(k+1)
\]
drop the \(k : 0..n \); it isn't helping
\[
\iff x = k^3 \land y = 3xk^2 + 3xk + 1 \Rightarrow x' = (k+1)^3 \land y' = 3x(k+1)^2 + 3x(k+1) + 1
\]
\[
\iff x' = x + y \land y' = y + 6xk + 6
\]
\[
= \iff x := x + y. \ y := y + k + k + k + k + k + k + 6
\]
and we're done, but it's a little inelegant to add up \(6k \) so let's say \(y := y + z \) and strengthen \(I \) to
\[
I_k \iff x = k^3 \land y = 3xk^2 + 3xk + 1 \land z = 6xk + 6
\]
Now we must revise the initialization
\[
I_0 \iff x := 0. \ y := 1. \ z := 6
\]
and recalculate the loop body
\[
k := 0..n \land I_k \Rightarrow I'(k+1)
\]
\[
\iff x = k^3 \land y = 3xk^2 + 3xk + 1 \land z = 6xk + 6
\]
\[
\Rightarrow x' = (k+1)^3 \land y' = 3x(k+1)^2 + 3x(k+1) + 1 \land z' = 6x(k+1) + 6
\]
\[
\iff x' = x + y \land y' = y + 6xk + 6 \land z' = z + 6
\]
\[
= \iff x := x + y. \ y := y + z. \ z := z + 6
\]
and we're done again. Altogether,
\[
x' = n^3 \iff x := 0. \ y := 1. \ z := 6. \ \text{for } k := 0..n \ \text{do } x := x + y. \ y := y + z. \ z := z + 6 \ \text{od}
\]
We never need a for-loop, so here's the same solution without one. Let
\[
Q = \forall k : \text{nat} \ x = k^3 \land y = 3xk^2 + 3xk + 1 \land z = 6xk + 6 \Rightarrow x' = (k+n)^3
\]
or, more obscurely and less convenient for proof,
\[
Q = y = 3xk^{2/3} + 3xk^{1/3} + 1 \land z = 6xk^{1/3} + 6 \Rightarrow x' = (x^{1/3} + n)^3
\]
Then
\[
x' = n^3 \land t' = t + n \iff x := 0. \ y := 1. \ z := 6. \ Q \land t' = t + n
\]
\[
Q \land t' = t + n \iff \begin{cases} \text{if } n = 0 \text{ then } \text{ ok} \\ \text{else } x := x + y. \ y := y + z. \ n := n - 1. \ t := t + 1. \ Q \land t' = t + n \end{cases}
\]
Here's a solution with a less obscure loop specification. Let
\[
R = x' = n^3 \land y' = 3nx^2 + 3xn + 1 \land z' = 6xn + 6 \land t' = t + n
\]
Then
\[
x' = n^3 \land t' = t + n \iff R
\]
\[
R \iff \begin{cases} \text{if } n = 0 \text{ then } x := 0. \ y := 1. \ z := 6 \\ \text{else } n := n - 1. \ t := t + 1. \ R. \ x := x + y. \ y := y + z. \ z := z + 6 \end{cases}
\]