Let \(n \) and \(r \) be natural variables in the refinement

\[
P \iff \begin{cases} n=1 & \text{then } r:=0 \\
\text{else } n:= \text{div} \ n \ 2. & \text{P. } r:= r+1 \end{cases}
\]

Suppose the operations \text{div} and + each take time 1 and all else is free (even the call is free). Insert appropriate time increments, and find an appropriate \(P \) to express the execution time in terms of

(a) the initial values of the memory variables. Prove the refinement for your choice of \(P \).

§ With time increments added, I must prove

\[
P \iff \begin{cases} n=1 & \text{then } r:=0 \\
\text{else } t:= t+1, \ n:= \text{div} \ n \ 2. & \text{P. } t:= t+1, \ r:= r+1 \end{cases}
\]

How should we choose \(P \)? Execution of \(P \) proceeds as follows. If \(n \) is initially 0, then \(n \) is divided by 2, making it again 0, and we are in an infinite loop. If \(n \) is initially positive, then it is repeatedly divided by 2 (rounding down) until it becomes 1, then \(r \) is assigned 0, then \(r \) is incremented as many times as \(n \) was divided by 2. The number of times \(n \) is divided by 2 until it becomes 1 is the logarithm (base 2) of \(n \). This may not be obvious, so I can easily code this procedure in any implemented programming language I like, and run it for a variety of initial values for \(n \) and \(r \) and for initial time 0, and see that the final value of \(t \) is \(2 \times \text{floor} \ (\text{log} \ n) \). So \(P \) can be

\[(n=0 \implies t'=\infty) \land (n>0 \implies t'= t+2 \times \text{floor} \ (\text{log} \ n))\]

But \text{floor} is an awkward function to work with, so I'll get rid of it by replacing the exact context, and

\[P \implies t' \leq t+2 \times \text{log} \ n\]

I prove it in parts (each conjunct separately), and I prove each part by cases.

First part, first case:

\[
\begin{align*}
(n=0 & \implies t'=\infty) \iff n=1 \land (r:=0) \quad \text{portation} \\
\equiv n=0 \land n=1 \land (r:=0) & \implies t'=\infty \quad \text{context: } n=0 \\
\equiv \bot \land (r:=0) & \implies t'=\infty \quad \text{context: } n=0 \\
\equiv \bot & \implies t'=\infty \quad \text{context: } n=0 \\
\equiv \top &
\end{align*}
\]

First part, last case:

\[
\begin{align*}
(n=0 & \implies t'=\infty) \iff n+1 \land (t:= t+1, \ n:= \text{div} \ n \ 2. \ n=0 \implies t'=\infty. \ t:= t+1, \ r:= r+1) \quad \text{portation and expand final assignment} \\
\equiv n=0 \land n+1 \land (t:= t+1, \ n:= \text{div} \ n \ 2. \ n=0 \implies t'=\infty. \ t:= t+1, \ r'=r+1 \land n'=n \land t'=t+1) & \implies t'=\infty \quad \text{simplify, and substitution law in two parts} \\
\equiv n=0 \land (\text{div} \ n \ 2 = 0 \implies t'=\infty. \ r'=r+1 \land n'=n \land t'=t+1) & \implies t'=\infty \quad \text{eliminate dependent composition} \\
\equiv n=0 \land (\exists r'', n'', t''). \ (\text{div} \ n \ 2 = 0 \implies t''=\infty) \land r''=r'+1 \land n''=n' \land t''=t''+1) & \implies t'=\infty \quad \text{one-point} \\
\equiv n=0 \land (n' \land t'=t') & \implies t'=\infty \quad \text{absorption and specialization} \\
\equiv \top &
\end{align*}
\]

Last part, first case:

\[
(n>0 \implies t' \leq t+2 \times \text{log} \ n) \iff n=1 \land (r:=0) \quad \text{portation and expand assignment} \\
\equiv n=1 \land r'=0 \land n'=n \land t'=t \quad \text{context, and } \text{log} \ 1 = 0 \\
\equiv \top
\]

Last part, last case:
(n>0 ⇒ t' ≤ t + 2 × log n)

⇐ n>1 ∧ (t:=t+1. n:= div n 2. n>0 ⇒ t' ≤ t + 2 × log n) portation and expand final assignment

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (t:=t+1. n:= div n 2. n>0 ⇒ t' ≤ t + 2 × log n) substitution law in two parts

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (t:=t+1. n:= div n 2. n>0 ⇒ t' ≤ t + 2 × log n) eliminate dependent composition

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (∃r'', n'', t'': (div n 2>0 ⇒ t'' ≤ t+1+ 2 × log(div n 2)) one-point for n'' and t''

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (∃r'': (div n 2>0 ⇒ t'' ≤ t+2+ 2 × log(div n 2)) ∧ r''=r''+1) distributive

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (∃r'': nat: r''=r''+1) ∧ (div n 2>0 ⇒ t'' ≤ t+2+ 2 × log(div n 2)) in preparation for one-point, rewrite r''=r''+1 and make r'': nat an explicit conjunct

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (∃r'': nat: r''=r''+1 ∧ (r'':nat)) ∧ (div n 2>0 ⇒ t' ≤ t+2+ 2 × log(div n 2)) now use one-point

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ (r'−1: nat) ∧ (div n 2>0 ⇒ t' ≤ t+2+ 2 × log(div n 2)) simplify div n 2>0

⇐ t' ≤ t + 2 × log n

⇐ n>1 ∧ r'≥1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(div n 2)) increase div n 2 to n/2 this will increase t + 2 + 2 × log(div n 2) this will weaken t' ≤ t + 2 + 2 × log(div n 2)

this will weaken n>1 ⇒ t' ≤ t + 2 + 2 × log(div n 2) this will weaken n>1 ⇒ n' ≥ 1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(div n 2)) this will strengthen t' ≤ t + 2 + 2 × log n ¬ n>1 ∧ r'≥1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(div n 2)) so we need to put ¬ in the left margin

⇐ t' ≤ t + 2 × log n ¬ n>1 ∧ r'≥1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(n/2)) drop r'≥1 this will weaken n>1 ∧ r'≥1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(n/2)) this will strengthen t' ≤ t + 2 × log n ¬ n>1 ∧ r'≥1 ∧ (n>1 ⇒ t' ≤ t + 2 + 2 × log(n/2)) so again we need to put ¬ in the left margin

⇐ t' ≤ t + 2 × log n ¬ (n>1 ⇒ t' ≤ t + 2 + 2 × log(n/2)) discharge and simplify

⇐ t' ≤ t + 2 × log n ¬ n>1 ∧ t' ≤ t + 2 × log n specialization

⇐ T

(b) the final values of the memory variables. Prove the refinement for your choice of \(P \).

§ I prove

\[
\begin{align*}
 t &= \text{t+2}\times r' \\
 \text{if } n=1 &\text{ then } r:=0 \\
 \text{else } t := t+1. n := \text{div n 2}. t' &= \text{t+2}\times r'. t := t+1. r := r+1 \end{align*}
\]
by cases. First case:

\[
\begin{align*}
 t &= \text{t+2}\times r' \\
 \text{if } n=1 &\text{ then } r := 0 \\
 \text{else } t := t+1. n := \text{div n 2}. t' &= \text{t+2}\times r'. t := t+1. r := r+1 \end{align*}
\]
expand assignment

\[
\begin{align*}
 t &= \text{t+2}\times r' \\
 \text{if } n=1 &\text{ then } r := 0 \\
 \text{else } t := t+1. n := \text{div n 2}. t' &= \text{t+2}\times r'. t := t+1. r := r+1 \end{align*}
\]

\(T \)
Last case:

\[t' = t + 2 \times r' \quad \iff \quad n \neq 1 \land (t := t + 1. \ n := \text{div} \ n \ 2. \ t' = t + 2 \times r'. \ t := t + 1. \ r := r + 1) \]

expand final assignment

\[t' = t + 2 \times r' \quad \iff \quad n \neq 1 \land (t := t + 1. \ n := \text{div} \ n \ 2. \ t' = t + 2 \times r'. \ t := t + 1. \ r := r + 1 \land n' = n \land t' = t) \]

substitution law in two parts

\[t' = t + 2 \times r' \quad \iff \quad n \neq 1 \land (t' = t + 1 + 2 \times r'. \ r' = r + 1 \land n' = n \land t' = t + 1) \]

one-point

\[t' = t + 2 \times r' \quad \iff \quad n \neq 1 \land t' = t + 2 + 2 \times (r' - 1) \]

\[\top \]