For which kinds of specifications P and Q is the following a theorem:

(a) $\neg (P \cdot \neg Q) \iff P \cdot Q$

(b) $P \cdot Q \iff \neg (P \cdot \neg Q)$

(c) $P \cdot Q = \neg (P \cdot \neg Q)$

After trying the question, scroll down to the solution.
§ First, rewrite the two sides.
\[\neg (P \cdot \neg Q) = \forall \sigma'' \cdot (\sigma' \cdot P) \sigma'' \Rightarrow (\sigma \cdot Q) \sigma'' \]
\[P \cdot Q = \exists \sigma'' \cdot (\sigma' \cdot P) \sigma'' \land (\sigma \cdot Q) \sigma'' \]

(a) \[\neg (P \cdot \neg Q) \iff P \cdot Q \]
§ If, for all prestates, \(P \) is deterministic, then (a) is a theorem. (That's sufficient, but not necessary.)

(b) \[P \cdot Q \iff \neg (P \cdot \neg Q) \]
§ If, for all prestates, \(P \) is satisfiable (\(P \) is implementable), then (b) is a theorem.

(c) \[P \cdot Q = \neg (P \cdot \neg Q) \]
§ If, for all prestates, \(P \) is satisfiable and deterministic, then (c) is a theorem.