- Here are four specifications in integer variables x and y.
 - (i) x = 2. y = 3
 - (ii) x'=2. y'=3
 - (iii) $(x = 2) \land (y = 3)$
 - (iv) $x'=2 \land y'=3$
- (a) Which of them make the final value of x be 2 and the final value of y be 3?
- (b) Which of them are implementable, and which are unimplementable?
- (c) Which of them are deterministic, and which are nondeterministic?
- (d) If the state variables are x, y, and z, which of them are deterministic, and which are nondeterministic?

After trying the question, scroll down to the solution.

- § Using the definitions of assignment and sequential composition, here are the four specifications as standard binary expressions, simplified.
 - (i) $x'=2 \land y'=3$
 - (ii) y'=3
 - (iii) $x'=x=2 \land y'=y=3$
 - (iv) $x'=2 \land y'=3$

Here is (ii) in detail:

$$= x'=2. y'=3 \exists x'', y'' \cdot x''=2 \land y'=3 = y'=3$$

one-point for x'', and y'' doesn't appear

- (a) Which of them make the final value of x be 2 and the final value of y be 3?
- \S (i) and (iv). (ii) leaves x' unspecified. (iii) is unimplementable.
- (b) Which of them are implementable, and which are unimplementable?
- § (i), (ii), and (iv) are implementable. (iii) is unimplementable.
- (c) Which of them are deterministic, and which are nondeterministic?
- § (i), (iii), and (iv) are deterministic because they specify a single value for both x' and y'. (ii) is nondeterministic because x' could be anything..
- (d) If the state variables are x, y, and z, which of them are deterministic, and which are nondeterministic?
- § The four specifications are now
 - (i) $x'=2 \land y'=3 \land z'=z$
 - (ii) y'=3
 - (iii) $x'=x=2 \land y'=y=3 \land z'=z$
 - (iv) $x'=2 \land y'=3$
 - (i) and (iii) are deterministic. (ii) and (iv) are nondeterministic.