Let \(S \) be a specification. Let \(C \) and \(C' \) be corresponding pre- and postconditions. How does the exact precondition for \(C' \) to be refined by \(S \) differ from \((S, C)\)? Hint: consider prestates in which \(S \) is unsatisfiable, then deterministic, then nondeterministic.

§

(the exact precondition for \(C' \) to be refined by \(S \))

\[
\forall \sigma' \cdot C' \Leftarrow S
\]

\[
S, C
\]

\[
\exists \sigma'' \cdot (\sigma' \Rightarrow S) \sigma'' \land (\sigma \Rightarrow C) \sigma''
\]

\[
\exists \sigma' \cdot S \land C'
\]

We are being asked about the difference between \(\forall \sigma' \cdot C' \Leftarrow S \) and \(\exists \sigma' \cdot S \land C' \). In a prestate for which \(S \) is both satisfiable and deterministic, there is no difference. In a prestate for which \(S \) is unsatisfiable, \(\forall \sigma' \cdot C' \Leftarrow S \) is \(\top \) and \(\exists \sigma' \cdot S \land C' \) is \(\bot \). In a prestate for which \(S \) is nondeterministic, \(\forall \sigma' \cdot C' \Leftarrow S \) is as strong as or stronger than \(\exists \sigma' \cdot S \land C' \); if \(C' \) is \(\top \) for all corresponding poststates, they are equal; if \(C' \) is \(\bot \) for all corresponding poststates, they are equal; but if \(C' \) is \(\top \) for some and \(\bot \) for other corresponding poststates, then \(\forall \sigma' \cdot C' \Leftarrow S \) is \(\bot \) and \(\exists \sigma' \cdot S \land C' \) is \(\top \). Here is an example to illustrate the difference. Let \(n \) be a natural variable, let \(S \equiv n' < n \), and let \(C' \equiv n' = 0 \). If \(n = 0 \), \(S \) is unsatisfiable, and

\[
n = 0 \Rightarrow (\forall \sigma' \cdot C' \Leftarrow S) \land \neg (\exists \sigma' \cdot S \land C')
\]

If \(n = 1 \), \(S \) is satisfiable and deterministic, and

\[
n = 1 \Rightarrow (\forall \sigma' \cdot C' \Leftarrow S) \land (\exists \sigma' \cdot S \land C')
\]

If \(n = 2 \), \(S \) is nondeterministic, and

\[
n = 2 \Rightarrow \neg (\forall \sigma' \cdot C' \Leftarrow S) \land (\exists \sigma' \cdot S \land C')
\]