Most arithmetic expressions can be evaluated. For example, $2+3$ evaluates to 5. Our evaluation rules do not give us any answer for $1/0$. That's because there is no single answer that makes sense. We might look at $n \cdot 1/(1/n)$, which is ∞. But we might equally well look at $n \cdot 1/(-1/n)$, which is $-\infty$. We already have some arithmetic expressions that evaluate to a bunch of answers. For example, $4^{1/2}$ evaluates to $2, -2$. So perhaps it makes sense to say $1/0 = \infty, -\infty$. What sense can we make of $0/0$?

After trying the question, scroll down to the solution.
As we saw in Exercise 39, we can consistently say $0/0 = 5$, and might try to justify it by noticing that $n \cdot (5/n)/(1/n) = 5$. But by the same reasoning we can say $0/0 = x$ for any x. So we could say $0/0 = x_{real}$. Or even $0/0 = x_{com}$ if we define x_{com} to be the extended complex numbers.