Relation R is transitive if $\forall x, y, z : R x y \land R y z \Rightarrow R x z$. Express formally that relation R is the transitive closure of relation Q (R is the strongest transitive relation that is implied by Q).

After trying the question, scroll down to the solution.
Here is a straightforward solution. Let $T R$ mean that R is a transitive relation. Formally,
\[T = \{ R : X \rightarrow X : \text{bin} \cdot \forall x, y, z : X \cdot R x y \land R y z \Rightarrow R x z \} \]
Let $A \geq B$ mean that relation A is everywhere as strong as relation B. Formally,
\[A \geq B = \forall x, y : X \cdot A x y \Rightarrow B x y \]
Then we can say that R is the transitive closure of Q as follows.
\[T R \land Q \geq R \land \forall A : X \rightarrow X : \text{bin} \cdot T A \land Q \geq A \Rightarrow R \geq A \]
Here is a nicer solution, but only for the special case $X = 0..n$ for some extended natural n. Let $P i j k$ mean “there is a path in Q from j to k via zero or more intermediate nodes all of which are less than i”. Formally,
\[P 0 = Q \]
\[\forall i, j, k : P (i+1) j k = P i j k \lor P i i \land P i k \]
Then we can say that R is the transitive closure of Q as follows:
\[R = P n \]
This simple definition leads to a beautiful algorithm for transitive closure.