Let \(n \) be a natural number, and let \(R \) be a relation on \(0..n \). In other words,
\[
R : (0..n) \to (0..n) \to \text{bin}
\]
We say that from \(x \) we can reach \(x \) in zero steps. If \(R x y \) we say that from \(x \) we can reach \(y \) in one step. If \(R x y \) and \(R y z \) we say that from \(x \) we can reach \(z \) in two steps. And so on. Express formally that from \(x \) we can reach \(y \) in some number of steps.

\[
x = y \lor \exists s : \text{nat} \forall n : 0..\#s+1 \cdot R ([x; s; y] n) ([x; s; y] (n+1))
\]

Here is another solution. I omit domains, which are always \(0..n \). Define the relational composition \((R, S)\) of relations \(R \) and \(S \) as follows:
\[
R \cdot S = \langle x, y \cdot \exists z : \forall R x z \land S z y \rangle
\]
Now define relational power \(R^m \) for relation \(R \) and natural \(m \) as follows:
\[
R^0 = \langle x, y : x = y \rangle \quad \text{(the identity relation)}
\]
\[
R^{m+1} = R^m \cdot R
\]
Then \(R^m x y \) says that from \(x \) we can reach \(y \) in \(m \) steps, and \(\exists m : R^m x y \) says that from \(x \) we can reach \(y \) in some number of steps.