- 11 (dual) One operator is the dual of another operator if it negates the result when applied to the negated operands. The zero-operand operators \top and \bot are each other's duals. If $op_0 \neg a = \neg op_1 a$ then op_0 and op_1 are duals. If $(\neg a) op_0 (\neg b) = \neg (a op_1 b)$ then op_0 and op_1 are duals. And so on for more operands.
- (a) Of the 4 one-operand binary operators, there is 1 pair of duals, and 2 operators that are their own duals. Find them.
- (b) Of the 16 two-operand binary operators, there are 6 pairs of duals, and 4 operators that are their own duals. Find them.
- (c) What is the dual of the three-operand operator **if then else fi** ? Express it using only the operator **if then else fi** .
- (d) The dual of a binary expression without variables is formed as follows: replace each operator with its dual, adding parentheses if necessary to maintain the precedence. Explain why the dual of a theorem is an antitheorem, and vice versa.
- (e) Let P be a binary expression without variables. From part (d) we know that every binary expression without variables of the form

(dual of
$$P$$
) = $\neg P$

is a theorem. Therefore, to find the dual of a binary expression with variables, we must replace each operator by its dual and negate each variable. For example, if a and b are binary variables, then the dual of $a \wedge b$ is $\neg a \vee \neg b$. And since

(dual of $a \wedge b$) = $\neg (a \wedge b)$

we have one of the Duality Laws:

 $\neg a \lor \neg b \equiv \neg (a \land b)$

The other of the Duality Laws is obtained by equating the dual and negation of avb. Obtain five laws that do not appear in this book by equating a dual with a negation.

(f)

Dual operators have theorem tables that are each other's vertical mirror reflections. For example, the theorem table for \land (below left) is the vertical mirror reflection of the theorem table for \lor (below right).

۸:	ΤТ				ТΤ	
	Τ⊥	\perp		v:	T⊥ ⊥T	Т
	$\bot \top$	\perp		••	$\bot \top$	Т
	$\perp \perp$	\perp			$\perp \perp$	
	1					

Design symbols (you may redesign existing symbols where necessary) for the 4 oneoperand and 16 two-operand binary operators according to the following criteria.

(i) Dual operators should have symbols that are vertical mirror reflections (like \land and \lor). This implies that self-dual operators have vertically symmetric symbols, and all others have vertically asymmetric symbols.

(ii) If $a \circ p_0 b = b \circ p_1 a$ then $o p_0$ and $o p_1$ should have symbols that are horizontal mirror reflections (like \Rightarrow and \Leftarrow). This implies that symmetric operators have horizontally symmetric symbols, and all others have horizontally asymmetric symbols.

After trying the question, scroll down to the solution.

- Of the 4 one-operand binary operators, there is 1 pair of duals, and 2 operators that are (a) their own duals. Find them.
- § To answer this question, I'll use the symbols I introduce in part (f). The pair of duals is: \mp (always \top) and \pm (always \perp). The two self-duals are: I (identity) and \pm (negation).
- (b) Of the 16 two-operand binary operators, there are 6 pairs of duals, and 4 operators that are their own duals. Find them.
- To answer this question, I'll use the symbols I will introduce in part (f). The six dual § pairs are: $\overline{a} \nabla$, $\vee \wedge$, $\geq \geq$, $\leq \leq$, $\underline{a} \overline{\nabla}$, $\overline{a} \nabla$. The four self-duals are: \langle , \rangle , \triangleright , \triangleleft .
- (c) What is the dual of the three-operand operator if then else fi? Express it using only the operator if then else fi.
- § Its theorem table is

TTT TT1 T1T TII ITT $\bot \top \bot \bot \bot \bot \top$ $\bot \bot \bot$ Т \bot Т \bot Т Т \bot \bot

The dual of if a then b else c fi is equivalent to if a then c else b fi.

- (d) The dual of a binary expression without variables is formed as follows: replace each operator with its dual, adding parentheses if necessary to maintain the precedence. Explain why the dual of a theorem is an antitheorem, and vice versa.
- I will show that for every expression P without variables, (dual of P) = $\neg P$. I do so § by induction on the structure of expression P. The two binary values give us two base cases.
 - (dual of \top) use the dual-forming rules = \bot =¬Τ (dual of \perp) use the dual-forming rules = Т _ $\neg \bot$

There is an induction step for each of the binary operators. Suppose (this is an induction hypothesis) that (dual of P) = $\neg P$. Then

(dual of $\neg P$) use the dual-forming rules \neg (dual of P) use the induction hypothesis = = $\neg \neg P$

Suppose that (dual of P) = $\neg P$ and (dual of Q) = $\neg Q$. Then (dual of $P \land Q$)

(dual of P) v (dual of Q)

use the dual-forming rules use the induction hypotheses use duality law

 $\neg (P \land Q)$ And similarly for all other operators.

 $\neg P \lor \neg Q$

=

=

=

§(e) From a=b we get $\neg a \neq \neg b \equiv \neg (a=b)$ From if a then b else c fi we get if $\neg a$ then $\neg c$ else $\neg b$ fi $\equiv \neg$ if a then b else c fi From $a=b \land c$ we get $\neg a \neq \neg b \lor \neg c \equiv \neg (a=b \land c)$ From $a=b \lor c$ we get $\neg a \neq \neg b \land \neg c = \neg (a=b \lor c)$ From $a = (b \land c)$ we get $\neg a \neq (\neg b \lor \neg c) \equiv \neg (a = (b \land c))$

§(f)	old new	Ŧ	Ι	- +	Ŧ												
	T L	T T	T L	⊥ ⊤	\perp	_											
	old new	Δ	V V	↓ ≷	<	⇒ ≼	>	<u> </u>	∧ ∧	Δ	∔ ⊽	⊳	>	\triangleleft	\$	∇	⊻
	⊤ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥	T T	T T	T	⊤ ⊥	⊥ ⊤	⊥ ⊤	\perp	\perp	T T	T T	⊤ ⊥	⊤ ⊥	⊥ ⊤	⊥ ⊤	\perp	\perp