
11 (dual)  One operator is the dual of another operator if it negates the result when applied to 
the negated operands.  The zero-operand operators  ⊤  and  ⊥  are each other's duals.  If  
op0 ¬a  =  ¬ op1 a  then  op0  and  op1  are duals.  If  (¬a) op0 (¬b)  =  ¬(a op1 b)  then  
op0  and  op1  are duals.  And so on for more operands.

(a) Of the 4 one-operand binary operators, there is 1 pair of duals, and 2 operators that are 
their own duals.  Find them.

(b) Of the 16 two-operand binary operators, there are 6 pairs of duals, and 4 operators that 
are their own duals.  Find them.

(c) What is the dual of the three-operand operator  if then else f ?  Express it using only the 
operator  if then else f .

(d) The dual of a binary expression without variables is formed as follows:  replace each 
operator with its dual, adding parentheses if necessary to maintain the precedence.  
Explain why the dual of a theorem is an antitheorem, and vice versa.

(e) Let  P  be a binary expression without variables.  From part (d) we know that every 
binary expression without variables of the form

(dual of  P )  =  ¬P
is a theorem.  Therefore, to find the dual of a binary expression with variables, we must 
replace each operator by its dual and negate each variable.  For example, if  a  and  b  are 
binary variables, then the dual of  a∧b  is  ¬a ∨ ¬b .  And since

(dual of  a∧b )  =  ¬(a∧b)
we have one of the Duality Laws:

¬a ∨ ¬b  =  ¬(a ∧ b)
The other of the Duality Laws is obtained by equating the dual and negation of  a∨b .  
Obtain five laws that do not appear in this book by equating a dual with a negation.

(f) Dual operators have theorem tables that are each other's vertical mirror reflections.  For 
example, the theorem table for  ∧   (below left) is the vertical mirror reflection of the 
theorem table for  ∨  (below right).

⊤⊤ ⎪ ⊤ ⊤⊤ ⎪ ⊤

∧: ⊤⊥ ⎪ ⊥ ∨: ⊤⊥ ⎪ ⊤
⊥⊤ ⎪ ⊥ ⊥⊤ ⎪ ⊤
⊥ ⊥ ⎪ ⊥ ⊥ ⊥ ⎪ ⊥

Design symbols (you may redesign existing symbols where necessary) for the 4 one-
operand and 16 two-operand binary operators according to the following criteria.
(i)  Dual operators should have symbols that are vertical mirror reflections (like  ∧  and  
∨   ).  This implies that self-dual operators have vertically symmetric symbols, and all 
others have vertically asymmetric symbols.
(ii)  If  a op0 b  =  b op1 a  then  op0  and  op1  should have symbols that are horizontal 
mirror reflections (like  ⇒   and  ⇐  ).  This implies that symmetric operators have 
horizontally symmetric symbols, and all others have horizontally asymmetric symbols.

After trying the question, scroll down to the solution. 



(a) Of the 4 one-operand binary operators, there is 1 pair of duals, and 2 operators that are 
their own duals.  Find them.

§ To answer this question, I'll use the symbols I introduce in part (f).  The pair of duals is:  
  (always  ⊤ ) and    (always  ⊥  ).  The two self-duals are:    (identity)  and    

(negation).

(b) Of the 16 two-operand binary operators, there are 6 pairs of duals, and 4 operators that 
are their own duals.  Find them.

§ To answer this question, I'll use the symbols I will introduce in part (f).  The six dual 
pairs are:   ,  ∨ ∧ ,    ,    ,    ,    .  The four self-duals are:  < ,  > ,   ,   .

(c) What is the dual of the three-operand operator  if then else f ?  Express it using only the 
operator  if then else f .

§ Its theorem table is
⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥ ⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥ ⊥⊤ ⊥ ⊥ ⊥

                                                                                                                                 
  ⊤   ⊥   ⊤   ⊥   ⊤   ⊤   ⊥   ⊥

The dual of  if a then b else c f  is equivalent to  if a then c else b f .

(d) The dual of a binary expression without variables is formed as follows:  replace each 
operator with its dual, adding parentheses if necessary to maintain the precedence.  
Explain why the dual of a theorem is an antitheorem, and vice versa.

§ I will show that for every expression  P  without variables,  (dual of  P ) = ¬P .  I do so 
by induction on the structure of expression  P .  The two binary values give us two base 
cases.

(dual of  ⊤ ) use the dual-forming rules
= ⊥
= ¬⊤

(dual of  ⊥ ) use the dual-forming rules
= ⊤
= ¬⊥

There is an induction step for each of the binary operators.  Suppose (this is an induction 
hypothesis) that  (dual of  P ) = ¬P .  Then

(dual of  ¬P ) use the dual-forming rules
= ¬(dual of  P ) use the induction hypothesis
= ¬¬P

Suppose that  (dual of  P ) = ¬P  and  (dual of  Q ) = ¬Q .  Then
(dual of  P∧Q ) use the dual-forming rules

= (dual of  P ) ∨ (dual of  Q ) use the induction hypotheses
= ¬P ∨ ¬Q use duality law
= ¬(P∧Q)

And similarly for all other operators.

§(e) From  a=b  we get  ¬a⧧¬b = ¬(a=b)
From  if a then b else c f  we get  if ¬a then ¬c else ¬b f = ¬if a then b else c f
From  a=b ∧ c  we get  ¬a⧧¬b ∨ ¬c  = ¬(a=b ∧ c)
From  a=b ∨ c  we get  ¬a⧧¬b ∧ ¬c  = ¬(a=b ∨ c)
From  a = (b∧c)  we get  ¬a ⧧ (¬b ∨ ¬c)  = ¬(a = (b∧c))



§(f) old  ¬
new
                                      
⊤ ⎪ ⊤ ⊤ ⊥ ⊥
⊥ ⎪ ⊤ ⊥ ⊤ ⊥

old ∨ ⇐ ⇒ = ∧ ⧧
new ∨ < > ∧
                                                                                                              
⊤ ⊤⎪ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊤ ⊥ ⎪ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥
⊥ ⊤ ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥
⊥ ⊥ ⎪ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥ ⊤ ⊥


