(Gödel/Turing incompleteness) Prove that we cannot consistently and completely define a total, deterministic interpreter. An interpreter is a predicate I that applies to texts; when applied to a text representing a binary expression, its result is equal to the represented expression. For example,

$$I \ "\forall s: [*char] \cdot \#s \geq 0" \ = \ \forall s: [*char] \cdot \#s \geq 0$$

After trying the question, scroll down to the solution.
§ Let $Q = \neg I Q$. Now

\[I Q = \neg I Q \]

If I is a complete interpreter as described in the question, then

\[= \neg I Q \]

If I is a complete interpreter, we have an inconsistency. To save ourselves we can leave the interpreter incomplete. In particular,

\[I \neg I Q = \neg I Q \]

must not be a theorem. If it is an antitheorem, then I is not an interpreter. So leave it unclassified. Alternatively, we could let I be partial so that $I Q = \text{null}$, or nondeterministic so that $I Q = \text{bin}$. Then $I Q = \neg I Q$ is a theorem, but we cannot use the Completion Rule to prove it is an antitheorem because $I Q$ is not elementary. So we do not have an inconsistency, but we also do not have a total, deterministic interpreter. As any programmer can see, applying I to $\neg I Q$ will cause an infinite execution, and produce no answer.

Although the question does not ask for this, here is how you define an interpreter. Start with

\[I \top = \top \]
\[I \bot = \bot \]

Now, for texts that represent negations, we want to say something like

\[I (\neg; s) = \neg I s \]

It says: to apply I to a text that starts with \neg, just apply I to the text after the \neg, and then negate the result. For texts that represent conjunctions, we want to say something like

\[I (s; \land; t) = I s \land I t \]

And so on for all operators of the theory we are interpreting. The trouble is precedence. For example, the expression

\[\neg \top \land \bot \]

starts with \neg, but it’s not negating $\top \land \bot$. One solution is to insist that all expressions be fully parenthesized. Another solution is to use Polish prefix notation (see Subsection 3.2.2 on page 31.)