
108 (Gödel/Turing incompleteness) Prove that we cannot consistently and completely define
a total, deterministic interpreter. An interpreter is a predicate that applies to texts;
when applied to a text representing a binary expression, its result is equal to the
represented expression. For example,

 “∀s: [*char]· #s ≥ 0” = ∀s: [*char]· #s ≥ 0

After trying the question, scroll down to the solution.

§ Let Q = “¬ Q” . Now
 Q replace Q with its equal

= “¬ Q” If is a complete interpreter as described in the question, then
= ¬ Q
If is a complete interpreter, we have an inconsistency. To save ourselves we can leave
the interpreter incomplete. In particular,

 “¬ Q” = ¬ Q
must not be a theorem. If it is an antitheorem, then is not an interpreter. So leave it
unclassified. Alternatively, we could let be partial so that Q = null , or
nondeterministic so that Q = bin . Then Q = ¬ Q is a theorem, but we cannot use
the Completion Rule to prove it is an antitheorem because Q is not elementary. So we
do not have an inconsistency, but we also do not have a total, deterministic interpreter.
As any programmer can see, applying to “¬ Q” will cause an infinite execution,
and produce no answer.

Although the question does not ask for this, here is how you define an interpreter. Start
with

 “⊤” = ⊤
 “⊥” = ⊥

Now, for texts that represent negations, we want to say something like
 (“¬”; s) = ¬ s

It says: to apply to a text that starts with “¬” , just apply to the text after the ¬ ,
and then negate the result. For texts that represent conjunctions, we want to say
something like

 (s; “∧”; t) = s ∧ t
And so on for all operators of the theory we are interpreting. The trouble is precedence.
For example, the expression

¬⊤ ∧ ⊥
starts with ¬ , but it's not negating ⊤ ∧ ⊥ . One solution is to insist that all expressions
be fully parenthesized. Another solution is to use Polish prefix notation (see Subsection
3.2.2 on page 31.)

