107 (Cantor's diagonal) Prove $\neg \exists f: nat \rightarrow nat \rightarrow nat \cdot \forall g: nat \rightarrow nat \cdot \exists n: nat \cdot f \ n = g$.

After trying the question, scroll down to the solution.

§ Here is a lemma. It starts with the local axiom $f: nat \rightarrow nat \rightarrow nat$.

```
f: nat \rightarrow nat \rightarrow nat function inclusion (or arrow) and specialization

⇒ \forall m: nat \cdot f m: nat \rightarrow nat function inclusion (or arrow) and specialization

⇒ \forall m: p: nat \cdot f m p: nat specialize p to m

⇒ \forall m: nat \cdot f m m: nat nat construction

⇒ \forall m: nat \cdot f m m + 1: nat domain law

= nat: \Box \langle m: nat \cdot f m m + 1 \rangle \land \forall m: nat \cdot f m m + 1: nat function inclusion (or arrow)

= \langle m: nat \cdot f m m + 1 \rangle : nat \rightarrow nat
```

Let missing domains be as in the question.

```
\neg \exists f \cdot \forall g \cdot \exists n \cdot f \ n = g
                                                               using the lemma, specialize g to \langle m: nat \cdot f m m + 1 \rangle
\leftarrow \neg \exists f \exists n \cdot f \ n = \langle m : nat \cdot f \ m \ m + 1 \rangle
                                                                                                                              function equality
         \neg \exists f \exists n : \Box (f n) = \Box \langle m : nat \cdot f m m + 1 \rangle \land \forall p : nat \cdot f n p = \langle m : nat \cdot f m m + 1 \rangle p
                                                                                                                                              domain
         \neg \exists f : \exists n : \Box (f n) = nat \land \forall p : nat : f n p = \langle m : nat : f m m + 1 \rangle p
                                                                                                                                                  apply
         \neg \exists f \exists n : \Box (f n) = nat \land \forall p : nat \cdot f n p = f p p + 1
                                                                                                                                          specialize
\leftarrow \neg \exists f \exists n \cdot \Box (f n) = nat \land f n \ n = f n \ n + 1
                                                                                                                                       cancellation
        \neg \exists f : \exists n : \Box (f n) = nat \land 0 = 1
                                                                                                                                               generic
=
         \neg \exists f \exists n : \Box (f n) = nat \land \bot drop unused quantifiers (idempotence, domains not null)
=
        \neg \bot
                                                                                                                                         binary law
=
         Т
```

Cantor's diagonal argument is popularly thought to prove that there are more real numbers than integers. But it does not prove that. To prove that requires an extra axiom

$$\phi A < \phi B = \neg \exists f: A \rightarrow B \cdot \forall g: B \cdot \exists n: A \cdot f \ n = g$$

Then we can prove ϕ int = ϕ nat and ϕ nat < ϕ (nat \rightarrow nat) and ϕ (nat \rightarrow nat) = ϕ real, and then conclude ϕ int < ϕ real. In my opinion, this extra axiom is unmotivated by any application, so I have not included it. To most mathematicians, it is somehow a fact.