- (Russell's paradox) Define $rus = \langle f: null \rightarrow bin \cdot \neg ff \rangle$. Can we prove $rus rus = \neg rus rus$? Is this an inconsistency? 106
- (a)
- (b)
- Can we add the axiom $\neg f: \Box f$? Would it help? (c)

After trying the question, scroll down to the solution.

(a) Can we prove $rus rus = \neg rus rus$?

§ To apply *rus* to *rus*, we must first prove that *rus* is in the domain of *rus*

	<i>rus</i> : \Box <i>rus</i>	use Domain Axiom
=	rus: null→bin	use Function Inclusion Axiom
=	null: \Box rus $\land \forall x$: null·rus x: bin	Both conjuncts are instances of axioms
_	-	

(so it is) and that rus is elementary (it isn't) or that it occurs only once and in a distributing context (it occurs twice). So we cannot use the application law to apply rus to rus. But let's do it anyway just to see what we get.

$$= \frac{rus rus}{\langle f: null \rightarrow bin \cdot \neg ff \rangle rus}$$
replace first *rus* by its equal
use Application Law (this step is wrong)
$$= \neg rus rus$$

(b) Is this an inconsistency?

- § Since we could not use the Application Law to apply *rus* to *rus*, we don't have a problem. But even if we could, we still wouldn't have a problem. In Exercise 27 we saw two instances of $A = \neg A$, namely, $null = \neg null$ and $bin = \neg bin$. Now we would have one more instance. We would have inconsistency if we had an <u>elementary</u> binary expression that is both a theorem and an antitheorem. The expressions *rus* and *rus rus* are <u>not</u> elementary. The expression *rus rus* = \neg *rus rus* is elementary, but we cannot use the Completion Rule to prove it is an antitheorem because *rus rus* is not elementary. So we do not have an inconsistency.
- (c) Can we add the axiom $\neg f: \Box f$? Would it help?
- § Since we don't have an inconsistency, we aren't in trouble, and we don't need help. If we did have an inconsistency, it <u>never</u> helps to add an axiom. Adding axioms can only add theorems and antitheorems, and we would want to decrease the quantity of theorems and/ or antitheorems. We could take away the axiom defining *rus*, but that wouldn't help either because (since it isn't a recursive definition) we could always use

$$\langle f: null \rightarrow bin \neg f \rangle$$

in place of *rus*. Since we have an instance of $f: \Box f$, namely *rus*: $\Box rus$, adding $\neg f: \Box f$

as an axiom would cause inconsistency.