This is a tutorial on a proof strategy for a common programming pattern. You have probably written (pieces of) programs in the following form.

\[
\text{(initialization). while } \neg(\text{done}) \text{ do (step) od}
\]

In this course we require specifications: one for the whole program, and one for the loop. Let's call them \(P \) and \(Q \). So we have two refinements.

\[
\begin{align*}
P & \iff (\text{initialization}). \ Q \\
Q & \iff \text{if } (\text{done}) \ \text{then } \text{ok } \text{else } (\text{step}). \ Q \text{ fi}
\end{align*}
\]

Specification \(P \) describes the problem we are solving. Usually that's given, maybe informally, and our job is to formalize it. We have to invent \(Q \), and that's probably the hardest part of the whole exercise. Often, \(Q \) is a lot like \(P \). \(P \) describes the whole problem, and \(Q \) describes what's still to be done when we're somewhere in the middle of execution.

As a simple example, \(P \) may talk about all the items of a list, indexes \(0,\ldots,#L \), and we are processing them in order. In the middle of execution, the remaining items are \(k,\ldots,#L \) for some variable \(k \), so that's how we change \(P \) into \(Q \). Or maybe we are accumulating a sum, so \(P \) says \(s' = \Sigma(\text{some terms}) \). Then \(Q \) says \(s' = s + \Sigma(\text{remaining terms}) \); in words, the final sum is the sum so far (the sum we have already accumulated) plus the sum of the remaining terms.

Sometimes it's hard or impossible to change \(P \) from saying the whole problem into saying the remaining problem somewhere in the middle of execution. So here's another possibility for \(Q \). We describe what's been done so far, let's call that \(A \), and then define \(Q \) as \(A \Rightarrow P \). \(Q \) says: given that we've done \(A \), finish doing \(P \). But try the suggestion of the previous paragraph first. When it works, it's a simpler specification than the one in this paragraph.

After we have defined \(P \) and \(Q \), we have to prove the two refinements. The (initialization) is usually some assignments, so the proof of the \(P \) refinement is just some uses of the Substitution Law.

The \(Q \) refinement can be proven by cases. The first case is

\[
(\text{done}) \land \text{ok } \Rightarrow Q
\]

The other case is

\[
\neg(\text{done}) \land ((\text{step}). \ Q) \Rightarrow Q
\]

If the (step) is just some assignments, then \((\text{step}). \ Q)\) can be simplified using the Substitution Law.

If \(Q \) happens to be an implication, say \(A \Rightarrow P \), then the first case is

\[
(\text{done}) \land \text{ok } \Rightarrow (A \Rightarrow P)
\]

and that can be changed by portation into

\[
(\text{done}) \land \text{ok } \land A \Rightarrow P
\]

The other case is

\[
\neg(\text{done}) \land ((\text{step}). \ A \Rightarrow P) \Rightarrow (A \Rightarrow P)
\]

which, by portation, is the same as

\[
A \land \neg(\text{done}) \land ((\text{step}). \ A \Rightarrow P) \Rightarrow P
\]

We might be able to simplify \((\text{step}). \ A \Rightarrow P\) into the form \(B \Rightarrow P \). Now we have to prove

\[
A \land \neg(\text{done}) \land (B \Rightarrow P) \Rightarrow P
\]
There is P on the left of the main implication that would imply P on the right, but the P on the left has an antecedent B which we need to get rid of. And we can get rid of it if we can prove

$$A \land \neg\text{(done)} \Rightarrow B$$

So that's the proof strategy.