
This is a tutorial on a proof strategy for a common programming pattern.  You have probably 
written (pieces of) programs in the following form.

(initialization).
while ¬(done)
do (step) od

In this course we require specifications:  one for the whole program, and one for the loop.  Let's 
call them  P  and  Q .  So we have two refinements.

P   ⇐   (initialization).  Q
Q   ⇐   if (done) then ok else (step).  Q f

Specification  P  describes the problem we are solving.  Usually that's given, maybe informally, 
and our job is to formalize it.  We have to invent  Q , and that's probably the hardest part of the 
whole exercise.  Often,  Q  is a lot like  P .  P  describes the whole problem, and  Q  describes 
what's still to be done when we're somewhere in the middle of execution.

As a simple example,  P  may talk about all the items of a list, indexes  0,..#L , and we are 
processing them in order.  In the middle of execution, the remaining items are  k,..#L  for some 
variable  k , so that's how we change  P  into  Q .  Or maybe we are accumulating a sum, so  P  
says  sʹ = Σ(some terms) .  Then  Q  says  sʹ = s + Σ(remaining terms) ;  in words, the final sum is 
the sum so far (the sum we have already accumulated) plus the sum of the remaining terms.

Sometimes it's hard or impossible to change  P  from saying the whole problem into saying the 
remaining problem somewhere in the middle of execution.  So here's another possibility for  Q .  
We describe what's been done so far, let's call that  A , and then define  Q  as  A⇒P .  Q  says:  
given that we've done  A , finish doing  P .  But try the suggestion of the previous paragraph first.  
When it works, it's a simpler specification than the one in this paragraph.

After we have defined  P  and  Q , we have to prove the two refinements.  The (initialization) is 
usually some assignments, so the proof of the  P  refinement is just some uses of the Substitution 
Law.

The  Q  refinement can be proven by cases.  The first case is
(done) ∧ ok  ⇒  Q

The other case is
¬(done) ∧ ((step).  Q)  ⇒  Q

If the (step) is just some assignments, then  ((step).  Q)  can be simplified using the Substitution 
Law.

If  Q  happens to be an implication, say  A⇒P , then the first case is
(done) ∧ ok  ⇒  (A⇒P)

and that can be changed by portation into
(done) ∧ ok ∧ A  ⇒  P

The other case is
¬(done) ∧ ((step).  A⇒P)  ⇒  (A⇒P)

which, by portation, is the same as
A ∧ ¬(done) ∧ ((step).  A⇒P)  ⇒  P

We might be able to simplify  ((step).  A⇒P)  into the form  B⇒P .  Now we have to prove
A ∧ ¬(done) ∧ (B⇒P)  ⇒  P



There is  P  on the left of the main implication that would imply  P  on the right, but the  P  on 
the left has an antecedent  B  which we need to get rid of.  And we can get rid of it if we can 
prove

A ∧ ¬(done)  ⇒  B
So that's the proof strategy.


