
This is a tutorial on a proof strategy for a common programming pattern. You have probably
written (pieces of) programs in the following form.

(initialization).
while ¬(done)
do (step) od

In this course we require specifications: one for the whole program, and one for the loop. Let's
call them P and Q . So we have two refinements.

P ⇐ (initialization). Q
Q ⇐ if (done) then ok else (step). Q f

Specification P describes the problem we are solving. Usually that's given, maybe informally,
and our job is to formalize it. We have to invent Q , and that's probably the hardest part of the
whole exercise. Often, Q is a lot like P . P describes the whole problem, and Q describes
what's still to be done when we're somewhere in the middle of execution.

As a simple example, P may talk about all the items of a list, indexes 0,..#L , and we are
processing them in order. In the middle of execution, the remaining items are k,..#L for some
variable k , so that's how we change P into Q . Or maybe we are accumulating a sum, so P
says sʹ = Σ(some terms) . Then Q says sʹ = s + Σ(remaining terms) ; in words, the final sum is
the sum so far (the sum we have already accumulated) plus the sum of the remaining terms.

Sometimes it's hard or impossible to change P from saying the whole problem into saying the
remaining problem somewhere in the middle of execution. So here's another possibility for Q .
We describe what's been done so far, let's call that A , and then define Q as A⇒P . Q says:
given that we've done A , finish doing P . But try the suggestion of the previous paragraph first.
When it works, it's a simpler specification than the one in this paragraph.

After we have defined P and Q , we have to prove the two refinements. The (initialization) is
usually some assignments, so the proof of the P refinement is just some uses of the Substitution
Law.

The Q refinement can be proven by cases. The first case is
(done) ∧ ok ⇒ Q

The other case is
¬(done) ∧ ((step). Q) ⇒ Q

If the (step) is just some assignments, then ((step). Q) can be simplified using the Substitution
Law.

If Q happens to be an implication, say A⇒P , then the first case is
(done) ∧ ok ⇒ (A⇒P)

and that can be changed by portation into
(done) ∧ ok ∧ A ⇒ P

The other case is
¬(done) ∧ ((step). A⇒P) ⇒ (A⇒P)

which, by portation, is the same as
A ∧ ¬(done) ∧ ((step). A⇒P) ⇒ P

We might be able to simplify ((step). A⇒P) into the form B⇒P . Now we have to prove
A ∧ ¬(done) ∧ (B⇒P) ⇒ P

There is P on the left of the main implication that would imply P on the right, but the P on
the left has an antecedent B which we need to get rid of. And we can get rid of it if we can
prove

A ∧ ¬(done) ⇒ B
So that's the proof strategy.

