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In this course, there are three basic principles related to programming and specifications:

(a) A specification is a binary expression (typically one that talks about the initial and final 
values of the program variables).

(b) A program is a special kind of specification (one that can be executed).
(c) Refinement (i.e. a specification satisfies another one) is expressed by implication  S ⇒ P .  

Program correctness (i.e. a program  A  satisfies its specification  B ) is just refinement 
( A ⇒ B ).

The hardest part to grasp is (b): a program is a special kind of specification.  In other words, a 
program is a binary expression. In particular, our programming theory equates a program with a 
binary expression that describes what happens if we execute that program.  Now, a real world 
program does not look at all like a binary expression.  In it, there are constructs like assignments, 
sequential compositions, conditionals and loops.  To achieve (b), our theory has to provide 
definitions for all these constructs.  In fact, our theory defines programming notations as 
abbreviations for logical expressions.

Assignment

For example, assignment x:= E is defined as an abbreviation:
x:= E   =   xʹ=E ∧ yʹ=y ∧ zʹ=z ∧ ...

where  x, y, z, ...  are all the program variables.  The definition says that  x:= E  changes the value 
of  x , leaving everything else alone.  The important point is that, to treat assignment in our 
theory, we have to expand it into its binary equivalent.  For example, suppose that our program 
variables are  x  and  y  and they are both integer.  Suppose that our specification says “increase  
x ”. Formally, the specification is  xʹ>x , i.e. the final value of  x  is greater than its initial value.  
How about assigning  x+2  to  x ?  This seems to be a valid way to refine this specification.  The 
refinement we need to prove is:

x:= x+2  ⇒  xʹ>x
To prove this, we have to realize that  x:= x+2  is an abbreviation for a binary expression. To 
prove the implication, we have to expand the assignment, getting rid of the abbreviation. 
Because we said that our variables are  x  and  y , the expansion is:

xʹ = x+2 ∧ yʹ=y
Notice the underlined part.  Even though  y  does not appear in the abbreviation  x:= x+2 , it 
appears in the unabbreviated binary expression.  The refinement proof goes as follows:

(x:= x+2) ⇒ xʹ>x expand assignment
= xʹ = x+2 ∧ yʹ=y  ⇒  xʹ>x use context  xʹ = x+2  in the underlined expression
= xʹ = x+2 ∧ yʹ=y  ⇒  x+2 > x arithmetic
= xʹ = x+2 ∧ yʹ=y  ⇒  ⊤ base
= ⊤ 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Now, you might think that  yʹ=y  is not really that important.  In this particular example, it isn’t. 
But in general it is very important.  You rely on the fact that the assignment changes the value of 
only one variable all the time when you are writing your programs (if your programming 
language supports pointers, then at least you hope that it is true).  You will rely on it in your 
refinement formal proofs later on in this course too.  For the time being, let us look at an example 
that does rely on it.  Suppose that the program variables are  x, y .  We would like to see the exact 
precondition under which  x:= x+1  refines  yʹ>2 . As you might guess, the precondition should be 
y>2 .  The reason is that  x:= x+1  does not change  y , so to ensure that  y  is greater than  2  in 
the final state, it must be true in the initial state.  Our informal reasoning relies on the fact that  
x:= x+1  does not change  y .  So must our formal reasoning.  Now for the formal proof. 
Remember that the formula for the exact precondition is:  ∀σʹ· P⇐S .  In this example, our state 
is  x, y , the specification  S  is  yʹ>2  and the specification  P  is  x:= x+1 .  Let us put them all 
together:

∀xʹ, yʹ·  yʹ>2  ⇐  (x:= x+1) expand assignment
= ∀xʹ, yʹ·  yʹ>2  ⇐  xʹ = x+1 ∧ yʹ=y one-point law twice

i.e. substitute  x+1  for xʹ  and  y  for  yʹ  in  yʹ>2
=  y>2

The common pitfalls regarding assignment have to do with not understanding that assignment 
stands for a binary expression:

(a) Some people go freely from  x:= E  to  xʹ=E  or from  xʹ=E  to  x:= E  disregarding all other 
program variables.

(b) Some people confuse  =  with  := .  I have seen people write things like xʹ:= E  which is 
completely wrong.  I have also seen things like  if x:= 1 then ... else ... f  which is not 
wrong grammatically (remember,  x:= 1  is a binary expression!) but it is probably not what 
was intended.  Remember: The assignment operator  :=  and the equality operator  =  are 
different.   Make sure you understand the differences between them.

The ok Program

You find it in most languages as the empty statement.  It is a program that performs no change to 
the state.  In our theory, it is an abbreviation of  xʹ=x ∧ yʹ=y ∧ zʹ=z ∧ ...  where x, y, z, ... are the 
program variables.  Everything said about assignment above is also useful for the treatment of  
ok .  Notice that  x:= x  is equal to  ok .

Sequential Composition

In most languages sequential composition is denoted by semicolon. In our language, it is denoted 
by a dot and it connects not just programs, but specifications in general.  Our theory defines it 
again as an abbreviation:  when you see a sequential composition  P.Q  you replace it with an 
existential quantification:

∃xʹʹ, yʹʹ, ... · (substitute  xʹ, yʹ, ... with xʹʹ, yʹʹ in  P ) ∧ (substitute  x, y, ... with xʹʹ, yʹʹ in  Q )
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As with assignment, to treat sequential composition, we should replace it with the binary 
expression it stands for.  For example, in integer program variables  x, y :

xʹ > x+y.  yʹ > x+y definition of sequential composition
= ∃xʹʹ, yʹʹ·  xʹʹ > x+y  ∧  yʹ > xʹʹ+yʹʹ generalization: replace yʹʹ with yʹ–xʹʹ–1
⇐ ∃xʹʹ·  xʹʹ > x+y  ∧  yʹ > xʹʹ+yʹ–xʹʹ–1 simplify and identity
= ∃xʹʹ·  xʹʹ > x+y generalization: replace xʹʹ with x+y+1
⇐ x+y+1 > x+y simplify
= ⊤

This means that
xʹ > x+y.  yʹ > x+y

leaves the final values of variables  x  and  y  completely arbitrary;  they could have any integer 
values.

If one or both of the operands of sequential composition are abbreviations, then we have to 
expand them first before expanding the sequential composition.  Remember that the substitutions 
in the definition of sequential composition work on the binary expressions to its left and right 
operands, not their abbreviations.  So the following examples don’t make sense:

x:= x+1. y:= y+1  =  ∃xʹʹ, yʹʹ · (x:= x+1) ∧ (yʹʹ:= yʹʹ+1)  WRONG!
ok.  xʹ>y  =  ∃xʹʹ, yʹʹ · ok  ∧  xʹ>yʹʹ  WRONG!

The correct way to expand these definitions (left as an exercise) gives respectively:
xʹ = x+1 ∧  yʹ = y+1

and
xʹ>y

Another mistake that I see quite often is to replace sequential composition with conjunction and 
vice versa.  This often appears in interesting combinations with the common mistakes about 
assignments that I mentioned above.  For example, it is not rare to see things like:

x:= x+2.  y:= x+1   =   xʹ = x+2  ∧  yʹ = x+1  WRONG!
Notice in this example that the final value of  y  should be  x+3  and not  x+1 .  The final value of  
x  is accidentally correct.
See the solution to Exercise 121 in pages 38-39 of the book for more common traps regarding 
sequential composition.

Substitution Law

The Substitution Law plays a special role in our theory.  We will be using it a lot, so it is a good 
idea to learn how to apply it well.  The reason the Substitution Law is important is that the 
situation in which it is useful (a sequence of assignments followed by a specification) happens all 
the time.  The Substitution Law applies when we have an assignment connected with a 
specification by sequential composition

x:= E.  P
It does not apply in other cases. It does not apply for example in:
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xʹ=E.  P
or in

xʹ=E ∧ P
(but try the context rule for the last example).

Whenever we have the correct situation:
x:= E.  P

we can apply the Substitution Law and replace the whole thing with
substitute  x  with  E  in  P

The reason why this is important is because it provides a quick way to make two expansions (one 
for the assignment and one for the sequential composition).  Skipping the expansion of the 
sequential composition is especially important, because this expansion is tedious and error-prone.  
Again, if  P  is abbreviated, e.g. an assignment, we have to remember to expand it first, before 
applying the Substitution Law.   The following is wrong:

x:= x+1.  ok Substitution Law WRONG!
= ok

The correct use of the Substitution Law would be to expand  ok  first. So, if we
had three variables, say  x, a, b , that would be:

x:= x+1.  ok expand  ok
= x:= x+1.  xʹ=x ∧ aʹ=a ∧ bʹ=b Substitution Law
= xʹ = x+1  ∧  aʹ=a  ∧  bʹ=b
In the substitution we leave  xʹ  alone.  It is only  x  that is being replaced by  x+1 .

A final thing to note about the Substitution Law is that in a long series of assignments it is better 
to start from the end and work our way to the beginning.  For example, in the following series of 
assignments (assume we only have two integer program variables  x, y ), we apply the 
Substitution Law first to the underlined sequential composition:

x:= x+1.  y:= x×2.  xʹ<y
= x:= x+1.  xʹ < x×2
The reason is that we can now re-apply the Substitution Law:
= xʹ < (x+1)×2
If we had worked from the beginning to the end, our work would be more
tedious:

x:= x+1.  y:= x×2.  xʹ<y
= x:= x+1.  xʹ=x ∧ yʹ = x×2.  xʹ<y
= xʹ = x+1 ∧ yʹ = (x+1)×2.  xʹ<y
and now the Substitution Law does not apply any more. We have to expand the sequential 
composition.  The result will be  xʹ < (x+1)×2  again, but this time we get there the hard way.
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Key Points

• In our theory, programs and specifications are seen as binary expressions and the common 
programming operators are defined as abbreviations for binary operators. The assignment, the 
empty statement and the sequential composition are examples of operators that are defined as 
abbreviations for binary expressions.

• Before using binary theory in our programs, we must expand their programming constructs 
into their equivalent binary expressions.

• The assignment  x:= E  is not equal to  xʹ=E .  Their difference is that the assignment also 
ensures that any programming variables other than  x  retain their values.

• When expanding a sequential composition  P.Q , we have to make sure that  P  and  Q  are 
already expanded into binary expressions.

• Sequential composition and conjunction are not the same.  Sequential composition talks about 
several events that happen in sequence.  Conjunction ensures that all its operands are true and 
does not say anything about sequencing.

• The Substitution Law is a very useful tool for expanding programs.  It allows us to do two 
expansions simultaneously.

• The Substitution Law applies when we have an assignment followed by a specification, like 
this:

x:= E.  P
It does not apply if there is no assignment, as in

xʹ=E.  P
or no sequential composition as in

xʹ=E ∧ P

• When we have two or more assignments in sequence, it is better to start applying the 
Substitution Law from right to left.


