Dependent Composition \(P \cdot Q \) (sequential execution)

\(P \) and \(Q \) must have exactly the same state variables.

Independent Composition \(P \| Q \) (parallel execution)

\(P \) and \(Q \) must have completely different state variables, and the state variables of the composition are those of both \(P \) and \(Q \).

Ignoring time and space variables

\[
P \| Q = P \land Q
\]

Example: in variable \(x \)

\[
x := x+1 = x' = x+1
\]

in variables \(y \) and \(z \)

\[
y := y+2 = y' = y+2 \land z' = z
\]

in variables \(x \), \(y \), and \(z \)

\[
x := x+1 \| y := y+2 = x' = x+1 \land y' = y+2 \land z' = z
\]
Partitioning:

If either \(x' \) or \(x:= \) appears in a process specification, then \(x \) belongs to that process, so neither \(x' \) nor \(x:= \) can appear in the other process specification. If neither \(x' \) nor \(x:= \) appears at all, then \(x \) can be placed on either side of the partition.

\[
x:= y \parallel y:= x \quad = \quad x'=y \land y'=x \land z'=z
\]

\(x \) belongs to the left process

\(y \) belongs to the right process

\(z \) belongs to either process

implementation of a process makes a private copy of the initial value of a variable belonging to the other process if the other process contains an assignment to that variable.
In boolean variable \(b \) and integer variable \(x \),

\[
\begin{align*}
b &:= x=x \parallel x:= x+1 & \text{replace } x=x \text{ by } T \\
&= b:= T \parallel x:= x+1 \\
\end{align*}
\]

\[
(x:= x+1. \ x:= x-1) \parallel y:= x \\
= ok \parallel y:= x \\
= y:= x
\]

\[
(x:= x+y. \ x:= x\times y) \parallel (y:= x-y. \ y:= x/y)
\]

versus

\[
(x:= x+y \parallel y:= x-y). \ (x:= x \times y \parallel y:= x/y)
\]

With time, independent composition is defined as

\[
P \parallel Q = \exists tP, tQ. \quad (\text{substitute } tP \text{ for } t' \text{ in } P) \\
\wedge (\text{substitute } tQ \text{ for } t' \text{ in } Q) \\
\wedge t' = \max tP \ tQ
\]
Laws of Independent Composition

\[(x := e \parallel y := f). \ P = (\text{for } x \text{ substitute } e \text{ and independently for } y \text{ substitute } f \text{ in } P)\]

\[P \parallel Q = Q \parallel P\] symmetry

\[P \parallel (Q \parallel R) = (P \parallel Q) \parallel R\] associativity

\[P \parallel ok = ok \parallel P = P\] identity

\[P \parallel Q \lor R = (P \parallel Q) \lor (P \parallel R)\] distributivity

\[P \parallel \text{if } b \text{ then } Q \text{ else } R\]

\[= \text{if } b \text{ then } (P \parallel Q) \text{ else } (P \parallel R)\] distributivity

\[\text{if } b \text{ then } (P \parallel Q) \text{ else } (R \parallel S)\]

\[= \text{if } b \text{ then } P \text{ else } R \parallel \text{if } b \text{ then } Q \text{ else } S\] distributivity
List Concurrency

\[L_i := e \quad \Rightarrow \quad L_i' = e \land (\forall j \cdot j \neq i \Rightarrow L_j' = L_j) \land x' = x \land y' = y \land \ldots \]

partition within lists

Example: maximum item in a nonempty list

\[\text{findmax } 0 \ (\# L) \ \text{ where} \]

\[\text{findmax } = \lambda i, j \cdot i < j \Rightarrow L_i' = \text{MAX} \ L [i;..j] \]

\[\text{findmax } i \ j \ \iff \ \begin{cases} \text{if } j - i = 1 \ \text{then ok} \\ \text{else} & ((\text{findmax } i \ (\text{div} \ (i+j) \ 2) \\ \text{||} \ \text{findmax} \ (\text{div} \ (i+j) \ 2) \ j) \\ L_i := \text{max} \ (L_i) \ (L \ (\text{div} \ (i+j) \ 2))) \end{cases} \]

recursive time = \(\text{ceil} \ (\log \ (j-i)) \)
Sequential to Parallel Transformation

\[x := y. \quad x := x + 1. \quad z := y \]

\[= \quad x := y. \quad (x := x + 1 \parallel z := y) \]

\[= \quad (x := y. \quad x := x + 1) \parallel z := y \]

\[\text{start} \rightarrow x := y \rightarrow x := x + 1 \rightarrow z := y \rightarrow \text{finish} \]
Whenever two programs occur in sequence, and neither assigns to a variable assigned in the other, and no variable assigned in the first appears in the second, they can be placed in parallel; a copy must be made of the initial value of any variable appearing in the first and assigned in the second.

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the other, they can be placed in parallel without any copying of initial values.
Buffer

\[produce = \ldots \cdot b := e \ldots \cdot \]
\[consume = \ldots \cdot x := b \ldots \cdot \]
\[control = produce. consume. control \]

\[P \rightarrow C \rightarrow P \rightarrow C \rightarrow P \rightarrow C \rightarrow P \rightarrow C \rightarrow \]

\[control = produce. newcontrol \]
\[newcontrol = consume. produce. newcontrol \]
\[newcontrol = (consume \parallel produce). newcontrol \]
produce =p:= e..........

consume =x:= c..........

control = produce. newcontrol

newcontrol = c:= p. (consume || produce). newcontrol

\[
\begin{array}{cccccccc}
P & P & P & P & P & P & P & P \\
B & B & B & B & B & B & B & B \\
C & C & C & C & C & C & C & C \\
\end{array}
\]

produce =bw:= e..........

consume =x:= br..........

control = produce. w:= w+1. consume. r:= r+1. control

\[
\begin{array}{cccccccc}
P & W & P & W & P & W & P & W \\
C & R & C & R & C & R & C & R \\
\end{array}
\]

control = produce. w:= mod (w+1) n.

consume. r:= mod (r+1) n.

control
Insertion Sort

define

\[
\text{sort} \; = \; \lambda n \cdot \forall i, j: 0, \ldots, n \cdot i \leq j \Rightarrow L_i \leq L_j
\]

\[
\text{swap } i \; j \; = \; L_i := L_j \| L_j := L_i
\]

\[
\text{sort}' (\#L) \iff \text{sort } 0 \Rightarrow \text{sort}' (\#L)
\]

\[
\text{sort } 0 \Rightarrow \text{sort}' (\#L) \iff \text{for } n := 0; \ldots, \#L \text{ do sort } n \Rightarrow \text{sort}' (n+1)
\]

\[
\text{sort } n \Rightarrow \text{sort}' (n+1) \iff
\]

if \(n=0 \) then ok

else if \(L (n-1) \leq L n \) then ok

else (swap \(n-1 \) \(n \). sort \(n-1 \) \(\Rightarrow \) sort' \(n \))

\[
\begin{bmatrix}
L_0 & L_1 & L_2 & L_3 & L_4 \\
0 & 1 & 2 & 3 & 4 & 5
\end{bmatrix}
\]
If $\text{abs}(i-j) > 1$ then

S_i and S_j in parallel

S_i and C_j in parallel

C_i and C_j in parallel
Dining Philosophers

\[
\begin{align*}
\text{life} & = (P \ 0 \lor P \ 1 \lor P \ 2 \lor P \ 3 \lor P \ 4) \cdot \text{life} \\
P \ i & = \text{up} \ i \cdot \text{up}(i+1) \cdot \text{eat} \ i \cdot \text{dn} \ i \cdot \text{dn}(i+1) \\
\text{up} \ i & = \text{chopstick} \ i := \top \\
\text{dn} \ i & = \text{chopstick} \ i := \bot \\
\text{eat} \ i & = \ldots \text{chopstick} \ i \ldots \text{chopstick}(i+1) \ldots
\end{align*}
\]

If \(i \neq j \), \((\text{up} \ i \cdot \text{up} \ j)\) becomes \((\text{up} \ i \parallel \text{up} \ j)\).
If \(i \neq j \), \((\text{up} \ i \cdot \text{dn} \ j)\) becomes \((\text{up} \ i \parallel \text{dn} \ j)\).
If \(i \neq j \), \((\text{dn} \ i \cdot \text{up} \ j)\) becomes \((\text{dn} \ i \parallel \text{up} \ j)\).
If \(i \neq j \), \((\text{dn} \ i \cdot \text{dn} \ j)\) becomes \((\text{dn} \ i \parallel \text{dn} \ j)\).
If \(i \neq j \land i+1 \neq j \), \((\text{eat} \ i \cdot \text{up} \ j)\) becomes \((\text{eat} \ i \parallel \text{up} \ j)\).
If \(i \neq j \land i \neq j+1 \), \((\text{up} \ i \cdot \text{eat} \ j)\) becomes \((\text{up} \ i \parallel \text{eat} \ j)\).
If \(i \neq j \land i+1 \neq j \), \((\text{eat} \ i \cdot \text{dn} \ j)\) becomes \((\text{eat} \ i \parallel \text{dn} \ j)\).
If \(i \neq j \land i \neq j+1 \), \((\text{dn} \ i \cdot \text{eat} \ j)\) becomes \((\text{dn} \ i \parallel \text{eat} \ j)\).
If \(i \neq j \land i+1 \neq j \land i \neq j+1 \), \((\text{eat} \ i \cdot \text{eat} \ j)\) becomes \((\text{eat} \ i \parallel \text{eat} \ j)\).

\[
\begin{align*}
\text{life} & = P \ 0 \ || \ P \ 1 \ || \ P \ 2 \ || \ P \ 3 \ || \ P \ 4 \\
P \ i & = (\text{up} \ i \ || \text{up}(i+1)) \cdot \text{eat} \ i \cdot (\text{dn} \ i \ || \text{dn}(i+1)) \cdot P \ i
\end{align*}
\]