
2015-12-10 Present and Ulterior Software Engineering, Springer, 2017 0

What is a Procedure?

Eric C.R. Hehner
Department of Computer Science, University of Toronto

hehner@cs.utoronto.ca

Question and Answers

What is the meaning of a procedure? This question is not so simple to answer, and its answer
has far-reaching consequences throughout computer science. By “procedure” I mean any
named, callable piece of program; depending on the programming language, it may be a
procedure, or function, or method, or something else. To illustrate my points, I will use the
Pascal programming language, designed at ETH Zürich 40 years ago by my academic
grandfather, Niklaus Wirth. I think it is an appropriate choice for celebrating the history of
software engineering at ETH. But the points I make apply to any programming language.

Here are two Pascal procedures.

procedure A; { this procedure prints 'A' }
begin

print ('B')
end;

procedure AA; { this procedure prints 'AA' }
begin

A; A
end

What is the meaning of procedure A ? Is it a procedure that prints 'A' as its specification (the
comment) says, or is it a procedure that prints 'B' as its implementation (the body) says?
Perhaps I should instead ask: Is A implemented correctly? Clearly it is not, though we cannot
say whether the specification or the implementation is at fault. Is AA implemented correctly?
This time I want to say yes: its specification says it prints 'AA' , and to do so it twice calls a
procedure whose specification says it prints 'A' . The error is in procedure A , not in procedure
AA .

Now consider this example.

function binexp (n: integer): integer; { for 0≤n<31 , binexp (n) = 2n }

procedure toobig; { if 220 > 20000 , print 'too big' ; otherwise do nothing }
begin

if binexp (20) > 20000 then print ('too big')
end

Only the header and specification of function binexp appear; the body is missing. But toobig
is there in its entirety. Now I ask: Is toobig a Pascal procedure? And I offer two answers.

Program Answer: No. We cannot compile and execute toobig until we have the body of
binexp , or at least a link to the body of binexp . toobig is not a procedure until it can be
compiled and executed. (We may not have the body of print either, and it may not even be
written in Pascal, but the compiler does have a link to it, so it can be executed.) Since toobig

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

Eric Hehner 2015-12-101

calls binexp , whose body is missing, we cannot say what is the meaning of toobig . The
specification of binexp , which is just a comment, is helpful documentation expressing the
intention of the programmer, but intentions are irrelevant. We need the body of binexp before
it is a Pascal function, and when we have the body of binexp , then toobig will be a Pascal
procedure.

Specification Answer: Yes. toobig conforms to the Pascal syntax for procedures. It type-
checks correctly. To determine whether binexp is being called correctly within toobig , we
need to know the number and types of its parameters, and the type of result returned; this
information is found in the header for binexp . To determine whether print is being called
correctly, we need to know about its parameters, and this information is found in the list of
built-in functions and procedures. To understand toobig , to reason about it, to know what its
execution will be, we need to know what the result of binexp (20) will be, and what effect
print ('too big') will have. The result of binexp (20) is specified in the comment, and the effect
of print ('too big') is specified in the list of built-in functions and procedures. We do not have
the body of binexp , and we probably cannot look at the body of print , but we do not need
them for the purpose of understanding toobig . Even if we could look at the bodies of binexp
and print , we should not use them for understanding and reasoning about toobig . That's an
important principle of software engineering; it allows programmers to work on different parts
of a program independently. It enables a programmer to call functions and procedures written
by other people, knowing only the specification, not the implementation. There are many ways
that binary exponentiation can be computed, but our understanding of toobig does not depend
on which way is chosen. Likewise for print . This important principle also enables a
programmer to change the implementation of a function or procedure, such as binexp and
print , but still satisfying the specification, without knowing where and why the function or
procedure is being called. If there is an error in implementing binexp or print , that error
should not affect the understanding of and reasoning about toobig . So, even without the
bodies of binexp and print , toobig is a procedure.

The semantics community has decided on the Program Answer. For them, the meaning of a
function or procedure is its body, not its specification. They do not assign a meaning to toobig
until the bodies of binexp and print are provided.

Most of the verification community has decided on the Program Answer. To verify a program
that contains a call, they insist on seeing the body of the procedure/function being called. They
do not verify that 'too big' is printed until the bodies of binexp and print are provided.

I would like the Software Engineering community to embrace the Specification Answer. That
answer scales up to large software; the Program Answer doesn't. The Specification Answer
allows us to isolate an error within a procedure (or other unit of program); the Program Answer
doesn't. The Specification Answer insists on having specifications, which are the very best form
of documentation; the Program Answer doesn't.

Theory of Programming

In my theory of programming (sometimes called “predicative programming”, sometimes called
UTP), we do not specify programs; we specify computation, or computer behavior. The
nonlocal (free) variables of the specification represent whatever we wish to observe about a
computation (initial state, final state, all states, interactions, execution time, space occupied).
Observing a computation provides values for those variables. A specification is a binary (i.e.
boolean) expression because, when you instantiate its variables with values obtained from
observing a computation, there are two possible outcomes: either the computation satisfies the
specification, or it doesn't. If you write anything other than a binary expression as a
specification (for example, a pair of predicates), you must say what it means for a computation

http://www.cs.utoronto.ca/~hehner/aPToP

2015-11-17 What is a Procedure? 2

to satisfy a specification, and to do that formally you must write a binary expression anyway.

A program is an implemented specification. It is a specification of computer behavior that you
can give to a computer and get the specified behavior. I also refer to any statement in a
program, or any sequence or structure of statements, as a program. Since a program is a
specification, and a specification is a binary expression, therefore a program is a binary
expression. For example, if the state (or program) variables are x and y , then the program
x:= x+y is the binary expression xʹ=x+y ∧ yʹ=y where unprimed variables represent the values
of the state variables before execution of the assignment, and primed variables represent the
values of the state variables after execution of the assignment.

x:= x+y = xʹ=x+y ∧ yʹ=y
Similarly for a conditional program

if b then P else Q = b∧P ∨ ¬b∧Q
 = (b⇒P) ∧ (¬b⇒Q)

Sequential composition is a little more complicated
P;Q = ∃xʹʹ, yʹʹ· (in P substitute xʹʹ, yʹʹ for xʹ, yʹ) ∧ (in Q substitute xʹʹ, yʹʹ for x, y)

but fortunately we can prove the Substitution Law, which doesn't involve quantification:
x:= e; P = (for x substitute e in P)

For example,
x:= x+y; x+y < 5 = (x+y)+y < 5

To say “specification P refines specification Q ” means that all behavior satisfying P also
satisfies Q . Formally, that's just implication: P⇒Q . For example,

xʹ<x ⇐ x:= x–1
says that specification xʹ<x is implied by, or refined by, or implemented by program x:= x–1 ,
and it is trivial to prove. As a second example,

xʹ≤x ⇐ if x>0 then xʹ<x
From those two examples, we conclude

xʹ≤x ⇐ if x>0 then x:= x–1
and that's how stepwise refinement works.

A complete explanation can be found in the book a Practical Theory of Programming and the
online course Formal Methods of Software Design.

Loop Semantics

Equating programs with binary expressions gives meaning to straight-line and branching
programs; but how shall we give meaning to loops? There are two answers: the Program
Answer and the Specification Answer. The Program Answer is the standard answer: by a
construction axiom and an induction axiom, also known as a least-fixed-point.

while-construction (fixed-point) axiom:
while a do B = if a then begin B; while a do B end

while-induction (least-fixed-point) axiom (σ is the prestate and σʹ is the poststate):
(∀σ, σʹ· S = if a then begin B; S end) ⇒ (∀σ, σʹ· S ⇒ while a do B)

Construction says that a while-loop equals its first unrolling. Induction says that of all
specifications satisfying the construction axiom, the while-loop is the weakest (least
deterministic). Least-fixed-points are difficult to use for program verification, so the
verification community has gone part way toward the Specification Answer, by using invariants.

The Specification Answer requires an implementable specification. Specification S is
implementable if ∀σ· ∃σʹ· S . The refinement

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/FMSD

Eric Hehner 2015-12-103

S ⇐ while a do B
means, or is an alternate notation for

S ⇐ if a then begin B; S end
In this unrolling, following the body B , we do not have the while-loop, but rather the
specification S . Any refinement is a sort of small procedure, and this refinement is a small
procedure with a recursive call, just like

procedure S; begin if a then begin B; S end end
and its execution is just like

S: if a then begin B; goto S end
For the recursive call, according to the Specification Answer, we take the meaning of the
procedure to be the specification. And so also for loops, with the same benefits. Here is an
example in one integer state variable x . To prove

x≥0 ⇒ xʹ=0 ⇐ while x>0 do x:= x–1
prove instead

x≥0 ⇒ xʹ=0 ⇐ if x>0 then begin x:= x–1; x≥0 ⇒ xʹ=0 end
That means proving

x≥0 ⇒ xʹ=0 ⇐ x>0 ∧ (x:= x–1; x≥0 ⇒ xʹ=0) ∨ x≤0 ∧ xʹ=x
Inside the parentheses we use the Substitution Law, and get

x≥0 ⇒ xʹ=0 ⇐ x>0 ∧ (x–1≥0 ⇒ xʹ=0) ∨ x≤0 ∧ xʹ=x
Now we have no more programming notations; the proof is just binary and number laws.

For proof purposes, the Specification Answer is much easier to use than the Program Answer.
But the biggest advantage of the Specification Answer is during programming. We start with a
specification, for example x≥0 ⇒ xʹ=0 , and we refine it. The obvious refinement is

x≥0 ⇒ xʹ=0 ⇐ x:= 0
but to obtain the same computation as in the preceding paragraph, we can refine it as

x≥0 ⇒ xʹ=0 ⇐ if x>0 then x>0 ⇒ xʹ=0 else x=0 ⇒ xʹ=0
Now we have two more specifications to refine.

x>0 ⇒ xʹ=0 ⇐ x:= x–1; x≥0 ⇒ xʹ=0
x=0 ⇒ xʹ=0 ⇐ begin end

And we're done. We never refine to a loop construct, so we never need any fixed-points, nor
any proof rules concerning loops, nor any invariants. But we form loops by reusing
specifications.

For execution time, we just add a time variable t , and increase it wherever we need to account
for the passage of time. To count iterations, we place t:= t+1 inside the loop. And we can
write specifications about execution time. For example,

x≥0 ⇒ tʹ=t+x ⇐ while x≠0 do begin x:= x–1; t:= t+1 end
which means, according to the Specification Answer,

x≥0 ⇒ xʹ=t+x ⇐ if x≠0 then begin x:= x–1; t:= t+1; x≥0 ⇒ xʹ=t+x end
That means proving

x≥0 ⇒ xʹ=t+x ⇐ x≠0 ∧ (x:= x–1; t:= t+1; x≥0 ⇒ xʹ=t+x) ∨ x=0 ∧ xʹ=x ∧ tʹ=t
Inside the parentheses we use the Substitution Law twice, and get

x≥0 ⇒ xʹ=t+x ⇐ x≠0 ∧ (x–1≥0 ⇒ xʹ=t+1+x–1) ∨ x=0 ∧ xʹ=x ∧ tʹ=t
Now we have no more programming notations; the proof is just binary and number laws.

We can just as easily prove
x<0 ⇒ tʹ=∞ ⇐ while x≠0 do begin x:= x–1; t:= t+1 end

which means
x<0 ⇒ tʹ=∞ ⇐ if x≠0 then begin x:= x–1; t:= t+1; x<0 ⇒ tʹ=∞ end

That means proving
x<0 ⇒ tʹ=∞ ⇐ x≠0 ∧ (x:= x–1; t:= t+1; x<0 ⇒ tʹ=∞) ∨ x=0 ∧ xʹ=x ∧ tʹ=t

Inside the parentheses we use the Substitution Law twice, and get
x<0 ⇒ tʹ=∞ ⇐ x≠0 ∧ (x–1<0 ⇒ tʹ=∞) ∨ x=0 ∧ xʹ=x ∧ tʹ=t

2015-11-17 What is a Procedure? 4

Now we have no more programming notations; the proof is just binary and number laws.

The Specification Answer is a general recipe for all kinds of loops. Departing momentarily
from Pascal, here is a more complicated structure using 1- and 2-level exits.

loop
A;
exit 1 when b;
C;
loop

D;
exit 2 when e;
F;
exit 1 when g;
H

end;
I

end

The Specification Answer requires a specification for each loop. If they are P and Q for these
two loops, then what we must prove is

P ⇐ A; if not b then begin C; Q end
Q ⇐ D; if not e then begin F; if not g then begin H; Q end else begin I; P end end

Note that specifications P and Q are used, rather than the loop constructs, on the right sides of
these reverse implications; that's the Specification Answer.

The literature on loop semantics is large, and entirely according to the Program Answer. But
the Specification Answer has advantages: it makes proofs much easier, and program derivation
much much easier. If we include time, we have more than total correctness, without any least-
fixed-points or invariants.

Halting Problem

The Halting Problem is widely considered to be a foundational result in computer science.
Here is a modern presentation of it. We have the header and specification of function halts ,
but not its body. Then we have procedure twist in its entirety, and twist calls halts . This is
exactly the situation we had with function binexp and procedure toobig . Usually, halts
gives two possible answers: 'stops' or 'loops' ; for the purpose of this essay, I have added a
third: 'not applicable' .

function halts (p, i: string): string;
{ return 'stops' if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i ; }
{ return 'loops' if p represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i ; }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }

procedure twist (s: string); { execution terminates if and only if halts (s, s) ≠ 'stops' }
begin

if halts (s, s) = 'stops' then twist (s)
end

Eric Hehner 2015-12-105

We assume there is a dictionary of function and procedure definitions that is accessible to
halts , so that the call halts ('twist', 'twist') allows halts to look up 'twist' , and subsequently
'halts' , in the dictionary, and retrieve their texts for analysis. Here is the “textbook proof” that
halts is incomputable.

Assume the body of function halts has been written according to its specification. Does
execution of twist ('twist') terminate? If it terminates, then halts ('twist', 'twist') returns
'stops' according to its specification, and so we see from the body of twist that
execution of twist ('twist') does not terminate. If it does not terminate, then
halts ('twist', 'twist') returns 'loops' , and so execution of twist ('twist') terminates. This
is a contradiction (inconsistency). Therefore the body of function halts cannot have
been written according to its specification; halts is incomputable.

This “textbook proof” begins with the computability assumption: that the body of halts can be
written, and has been written. The assumption is necessary for advocates of the Program
Answer to say that twist is a Pascal procedure, and so rule out 'not applicable' as the result of
halts ('twist', 'twist') . If we suppose the result is 'stops' , then we see from the body of twist
that execution of twist ('twist') is nonterminating, so the result should be 'loops' . If we
suppose the result is 'loops' , then we see from the body of twist that execution of
twist ('twist') is terminating, so the result should be 'stops' . Thus all three results are
eliminated, we have an inconsistency, and advocates of the Program Answer blame the
computability assumption for the inconsistency.

Advocates of the Program Answer must begin by assuming the existence of the body of halts ,
but since the body is unavailable, they are compelled to base their reasoning on the specification
of halts as advocated in the Specification Answer, contrary to the Program Answer.

Advocates of the Specification Answer do not need the computability assumption. According to
them, twist is a Pascal procedure even though the body of halts has not been written. What
does the specification of halts say the result of halts ('twist', 'twist') should be? The
Specification Answer eliminates 'not applicable' . As before, if we suppose the result is 'stops' ,
then we see from the body of twist that execution of twist ('twist') is nonterminating, so the
result should be 'loops' ; if we suppose the result is 'loops' , then we see from the body of
twist that execution of twist ('twist') is terminating, so the result should be 'stops' . Thus all
three results are eliminated. But this time there is no computability assumption to blame. This
time, the conclusion is that the body of halts cannot be written due to inconsistency of its
specification.

Both advocates of the Program Answer and advocates of the Specification Answer conclude that
the body of halts cannot be written, but for different reasons. According to advocates of the
Program Answer, halts is incomputable, which means that it has a consistent specification that
cannot be implemented in a Turing-Machine-equivalent programming language like Pascal.
According to advocates of the Specification Answer, halts has an inconsistent specification,
and the question of computability does not arise.

Simplified Halting Problem

The distinction between these two positions can be seen better by trimming away some
irrelevant parts of the argument. The second parameter of halts and the parameter of twist
play no role in the “textbook proof” of incomputability; any string value could be supplied, or
the parameter could be eliminated, without changing the “textbook proof”. The first parameter
of halts allows halts to be applied to any string, but there is only one string we apply it to in
the “textbook proof”; so we can also eliminate it by redefining halts to apply specifically to
'twist' . Here is the result.

2015-11-17 What is a Procedure? 6

function halts: string;
{ return 'stops' if twist is a Pascal procedure whose execution terminates; }
{ return 'loops' if twist is a Pascal procedure whose execution does not terminate; }
{ return 'not applicable' if twist is not a Pascal procedure }

procedure twist; { execution terminates if and only if halts ≠ 'stops' }
begin

if halts = 'stops' then twist
end

The “textbook proof” that halts is incomputable is unchanged.
Assume the body of function halts has been written according to its specification. Does
execution of twist terminate? If it terminates, then halts returns 'stops' according to
its specification, and so we see from the body of twist that execution of twist does not
terminate. If it does not terminate, then halts returns 'loops' , and so execution of twist
terminates. This is a contradiction (inconsistency). Therefore the body of function halts
cannot have been written according to its specification; halts is incomputable.

Function halts is now a constant, not depending on the value of any parameter or variable.
There is no programming difficulty in completing the body of halts . It is one of three simple
statements: either halts:= 'stops' or halts:= 'loops' or halts:= 'not applicable' . The problem
is to decide which of those three it is. If the body of halts is halts:= 'stops' , we see from the
body of twist that it should be halts:= 'loops' . If the body of halts is halts:= 'loops' , we see
from the body of twist that it should be halts:='stops' . If the body of halts is halts:= 'not
applicable' , advocates of both the Program Answer and the Specification Answer agree that
twist is a Pascal procedure, so again that's the wrong way to complete the body of halts . The
specification of halts is clearly inconsistent; it is not possible to conclude that halts is
incomputable. The two parameters of halts served only to complicate and obscure.

Printing Problems

The “textbook proof” that halting is incomputable does not prove incomputability; it proves
that the specification of halts is inconsistent. But it really has nothing to do with halting; any
property of programs can be treated the same way. Here is an example.

function WhatTwistPrints: string;
{ return 'A' if twist is a Pascal procedure whose execution prints 'A' ; }
{ return 'B' if twist is a Pascal procedure whose execution does not print 'A' ; }
{ return 'not applicable' if twist is not a Pascal procedure }

procedure twist; { if WhatTwistPrints = 'A' then print 'B' ; otherwise print 'A' }
begin

if WhatTwistPrints = 'A' then print ('B') else print ('A')
end

Here is the “textbook proof” of incomputability, adapted to function WhatTwistPrints .
Assume the body of function WhatTwistPrints has been written according to its
specification. Does execution of twist print 'A' or 'B' ? If it prints 'A' , then
WhatTwistPrints returns 'A' according to its specification, and so we see from the body
of twist that execution of twist prints 'B' . If it prints 'B' , then WhatTwistPrints
returns 'B' according to its specification, and so we see from the body of twist that
execution of twist prints 'A' . This is a contradiction (inconsistency). Therefore the
body of function WhatTwistPrints cannot have been written according to its
specification; WhatTwistPrints is incomputable.

Eric Hehner 2015-12-107

The body of function WhatTwistPrints is one of WhatTwistPrints:= 'A' or
WhatTwistPrints:= 'B' or WhatTwistPrints:= 'not applicable' so we cannot call
WhatTwistPrints an incomputable function. But we can rule out all three possibilities, so the
specification of WhatTwistPrints is inconsistent. No matter how simple and clear the
specification may seem to be, it refers to itself (indirectly, by referring to twist , which calls
WhatTwistPrints) in a self-contradictory manner. That's exactly what the halts specification
does: it refers to itself (indirectly by saying that halts applies to all procedures including
twist , which calls halts) in a self-contradictory manner.

The following example is similar to the previous example.

function WhatStraightPrints: string;
{ return 'A' if straight is a Pascal procedure whose execution prints 'A' ; }
{ return 'B' if straight is a Pascal procedure whose execution does not print 'A' ; }
{ return 'not applicable' if straight is not a Pascal procedure }

procedure straight; { if WhatStraightPrints = 'A' then print 'A' ; otherwise print 'B' }
begin

if WhatStraightPrints = 'A' then print ('A') else print ('B')
end

To advocates of the Program Answer, straight is not a Pascal procedure because the body of
WhatStraightPrints has not been written. Therefore WhatStraightPrints should return
'not applicable' , and its body is easily written: WhatStraightPrints:= 'not applicable' . As soon
as it is written, it is wrong. Advocates of the Specification Answer do not have that problem,
but they have a different problem: it is equally correct for WhatStraightPrints to return 'A' or
to return 'B' .

The halting function halts has a similar dilemma when applied to

procedure straight (s: string); { execution terminates if and only if halts (s, s) = 'stops' }
begin

if halts (s, s) not= 'stops' then straight (s)
end

The specification of halts may sound all right, but we are forced by the examples to admit that
the specification is not as it sounds. In at least one instance (twist), the halts specification is
overdetermined (inconsistent), and in at least one instance (straight), the halts specification is
underdetermined.

Limited Halting

It is inconsistent to ask for a Pascal function to compute the halting status of all Pascal
procedures. But we can ask for a Pascal function to compute the halting status of some Pascal
procedures. For example, a function to compute the halting status of just the two procedures

procedure stop (s: string); begin end

procedure loop (s: string); begin loop (s) end

is easy. Perhaps we can ask for a Pascal function halts1 to compute the halting status of all
Pascal procedures that do not refer to halts1 , neither directly nor indirectly. Here is its header,
specification, and a start on its implementation.

2015-11-17 What is a Procedure? 8

function halts1 (p, i: string): string;
{ return 'stops' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts1 (neither directly nor indirectly) }
{ and whose execution terminates when given input i ; }
{ return 'loops' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts1 (neither directly nor indirectly) }
{ and whose execution does not terminate when given input i ; }
{ return 'maybe' if p represents a Pascal procedure with one string input parameter }
{ that refers to halts1 (either directly or indirectly); }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }
begin

if (p does not represent a Pascal procedure with one string input parameter)
then halts1:= 'not applicable'
else if (p refers to halts directly or indirectly)
 then halts1:= 'maybe'
 else (return halting status of p , either 'stops' or 'loops')

end

The first case checks whether p represents a (valid) procedure exactly as a Pascal compiler
does. The middle case looks like a transitive closure algorithm, but it is problematic because,
theoretically, there can be an infinite chain of calls. Thus we may be able to compute halting for
this limited set of procedures, but not determine whether a procedure is in this limited set. The
last case may not be easy, but at least it is free of the reason it has been called incomputable:
that it cannot cope with

procedure twist1 (s: string); { execution terminates if and only if halts1 (s, s) ≠ 'stops' }
begin

if halts1 (s, s) = 'stops' then twist1 (s)
end

Procedure twist1 refers to halts1 by calling it, so halts1 ('twist1', 'twist1') = 'maybe' , and
execution of twist1 ('twist1') is terminating.

Calling is one kind of referring, but not the only kind. In the specification of halts1 , the name
halts1 appears, and also in the body. These are self-references, whether or not halts1 calls
itself. We exempt halts1 from having to determine the halting status of procedures containing
any form of reference to halts1 ; the result is 'maybe' . We might try to circumvent the
limitation by writing another function halts2 that is identical to halts1 but renamed (including
in the specification, the return statements, and any recursive calls).

function halts2 (p, i: string): string;
{ return 'stops' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts2 (neither directly nor indirectly) }
{ and whose execution terminates when given input i ; }
{ return 'loops' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts2 (neither directly nor indirectly) }
{ and whose execution does not terminate when given input i ; }
{ return 'maybe' if p represents a Pascal procedure with one string input parameter }
{ that refers to halts2 (either directly or indirectly); }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }

Eric Hehner 2015-12-109

begin
if (p does not represent a Pascal procedure with one string input parameter)
then halts2:= 'not applicable'
else if (p refers to halts2 directly or indirectly)
 then halts2:= 'maybe'
 else (return halting status of p , either 'stops' or 'loops')

end

Of course, halts2 has its own nemesis:

procedure twist2 (s: string);
begin

if halts2 (s, s) = 'stops' then twist2 (s)
end

The point is that halts2 can determine halting for procedures that halts1 cannot, and halts1
can determine halting for procedures that halts2 cannot. For example,

halts1 ('twist1', 'twist1') = 'maybe' because twist1 calls halts1
halts2 ('twist1', 'twist1') = 'stops' because execution of twist1 ('twist1') terminates
halts2 ('twist2', 'twist2') = 'maybe' because twist2 calls halts2
halts1 ('twist2', 'twist2') = 'stops' because execution of twist2 ('twist2') terminates

But there are procedures that refer to both halts1 and halts2 , for which both halts1 and
halts2 say 'maybe' . The most interesting point is this: even though halts1 and halts2 are
identical except for renaming, they produce different results when given the same input,
according to their specifications, as the above four examples show.

Unlimited Halting

In Pascal, as originally defined, identifiers cannot contain underscores. I now define a new
programming language, Pascal_, which is identical to Pascal except that all identifiers must end
with an underscore. Pascal_ is neither more nor less powerful than Pascal: they are both
Turing-Machine-equivalent. In this new language, perhaps we can write a function named
halts_ that determines the halting status of all Pascal procedures. Pascal procedures are
syntactically prevented from referring to halts_ , so the problem of determining whether a
Pascal procedure refers to halts_ disappears, along with the 'maybe' option.

function halts_ (p_, i_: string): string;
{ return 'stops' if p_ represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i_ ; }
{ return 'loops' if p_ represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i_ ; }
{ return 'not applicable' if p_ does not represent a Pascal procedure }
{ with one string input parameter }
begin

if (p_ does not represent a Pascal procedure with one string input parameter)
then halts_:= 'not applicable'
else (return halting status of p_ , either 'stops' or 'loops')

end

If it is possible to write a Pascal function to compute the halting status of all Pascal procedures
that do not refer to this function, then by writing in another language, we can compute the
halting status of all Pascal procedures.

2015-11-17 What is a Procedure? 10

There is an argument that, at first sight, seems to refute the possibility of computing the halting
status of all Pascal procedures just by programming in another language. If we can write
halts_ in Pascal_, then we can easily obtain a Pascal function halts just by deleting the
underscore from the Pascal_ identifiers. We thus obtain a Pascal function with the same
functionality. But there cannot be a Pascal function that computes the halting status of all
Pascal procedures. Therefore, the argument concludes, there cannot be a Pascal_ function to do
so either.

As compelling as the previous paragraph may seem, it is wrong. Even though halts_ fulfills
the specification, telling the halting status of all Pascal procedures, and halts is obtained from
halts_ by renaming, halts does not fulfill the specification. The next two sections explain why.

How Do We Translate?

If I say “My name is Eric Hehner.”, I am telling the truth. If Margaret Jackson says exactly the
same words, she is lying. There is a self-reference (“My”), and the truth of that sentence
depends on who says it.

Here is a Pascal_ procedure that prints its own name.

procedure A_; { this procedure prints its own name }
begin print_ ('A_') end

How do we translate this procedure to Pascal? There are two answers, and here is the Program
Answer.

procedure A; { this procedure prints its own name }
begin print ('A_') end

Ignoring the specification, which is just a comment, the Program Answer is a procedure that
performs the same action(s). The original and the translation have the same output, but clearly
this translation does not preserve the intention. The Pascal_ procedure A_ meets its
specification; the Pascal translation A does not.

The Specification Answer is

procedure A; { this procedure prints its own name }
begin print ('A') end

This translation preserves the intention, meets the same specification, but it does not have the
same output. Translating from halts_ to halts has the same problem. We cannot preserve the
intention because the specification at the head of halts_ , which is perfectly reasonable for a
Pascal_ function, becomes inconsistent when placed at the head of a Pascal function. If we just
use the same Pascal_ procedure but delete the underscores from the ends of identifiers, we
obtain a Pascal procedure that no longer satisfies the specification.

There is another argument that, at first sight, also seems to refute the possibility of computing
the halting status of all Pascal procedures just by programming in another language. In Pascal,
we can write an interpreter for Pascal_ programs. So if we could write a halting function
halts_ in Pascal_ for all of Pascal, we could feed the text of halts_ to this interpreter, and thus
obtain a Pascal function to compute halting for all Pascal procedures. But there cannot be a
Pascal function that computes the halting status of all Pascal procedures. Therefore, the
argument concludes, there cannot be a Pascal_ function to do so either.

Eric Hehner 2015-12-1011

The reason this argument fails is the same as the reason the previous argument fails. The
interpreter interpreting halts_ is just like the translation of halts_ into Pascal by deleting
underscores. The interpreter interpreting halts_ can be called by another Pascal program;
halts_ cannot be called by a Pascal program. That fact materially affects their behavior.
Pascal_ program halts_ can be applied to a Pascal procedure d that calls the interpreter
interpreting halts_ applied to d , and it will produce the right answer. But the interpreter
interpreting halts_ applied to d calls the interpreter interpreting halts_ applied to d , and
execution will not terminate.

the Barber

A town named Russellville consists of some men (only men). Some of the men shave
themselves; the others do not shave themselves. A barber for Russellville is a person who
shaves all and only those men in Russellville who do not shave themselves. There is a barber
for Russellville; his name is Bertrand_ and he lives in the neighboring town of Russellville_.
Without any difficulty, he satisfies the specification of barber for Russellville.

One of the men in Russellville, whose name is Bertrand, decided that there is no need to bring
in a barber from outside town. Bertrand decided that he could do the job. He would shave
those men whom Bertrand_ shaves, and not shave those men whom Bertrand_ does not shave.
If Bertrand_ is fulfilling the role of barber, then by doing exactly the same actions as Bertrand_
(translation by the Program Answer), Bertrand reasoned that he would fulfill the role of barber.
But Bertrand is wrong; those same actions will not fulfill the role of barber when Bertrand
performs them. To be a barber for Russellville, Bertrand has to shave himself if and only if he
does not shave himself. A specification that is perfectly consistent and possible for someone
outside town becomes inconsistent and impossible when it has to be performed by someone in
town.

And so it is with the halting specification, and for the same reason. For Bertrand_, the barber
specification has no self-reference; for Bertrand, the barber specification has a self-reference.
For halts_ , the halting specification has no self-reference; for halts , the halting specification
has a self-reference (indirectly through twist and other procedures that call halts).

Conclusion

The question “What is the meaning of a procedure?” has at least two defensible answers, which
I have called the “Program Answer” and the “Specification Answer”. The Program Answer
says that the meaning of a procedure (or any other unit of program) is its body; the
Specification Answer says that the meaning of a procedure is its specification. These two
answers have quite different consequences throughout computer science.

To find the meaning of a procedure that contains calls to other procedures, the Program Answer
requires the bodies of those other procedures; and if they contain calls, then also the bodies of
those procedures; and so on, transitively. For that reason, the Program Answer does not scale
up; large software must be analyzed as a whole.

The Specification Answer gives the meaning of a procedure directly, without looking at its
body. But this answer raises a different question: does the body satisfy the specification? If the
body contains calls to other procedures, only the specifications of those other procedures are
used as the meanings of the calls. There is no transitive closure. So the Specification Answer
does scale up.

2015-11-17 What is a Procedure? 12

The Program Answer can be used to verify whether some software has a certain property,
giving the answer “yes” or “no”. The Specification Answer can do more: if there is an error, it
isolates the error to a specific procedure.

The meaning of loops, and the methods for verifying loops, have the same two answers as
procedures. The Program Answer uses least-fixed-points as the meaning of loops, but they are
difficult to find, difficult to use in verification, and useless for program construction. The
Specification Answer says that the meaning of a loop is a specification, and verification is a
single unrolling. The Specification Answer enables programming by refinement, without
invariants.

For translation between languages, the Program Answer says that behavior should be preserved,
and the Specification Answer says that intention should be preserved. Surprisingly, the two
answers give different results. Preserving behavior may not preserve intention. A specification
that is consistent and satisfiable in one language may be inconsistent and unsatisfiable in
another.

In the Halting Problem, the Program Answer requires the computability assumption; halts
must have a body to be a function with a meaning, and for twist to be a procedure whose
execution can be determined. But the assumption that halts has a body does not give us the
body, so we still have no meaning for halts , and cannot reason about the execution of twist .
The Specification Answer says that we know the meaning of halts from its specification, and
we can reason about the execution of twist . We don't need the computability assumption, and
we reach the conclusion that the specification of halts is inconsistent.

The standard proofs that halting is incomputable prove only that it is inconsistent to ask for a
halting function for a Turing-Machine-equivalent language in which that same halting function
is callable. By weakening the specification a little, reducing the domain from “all procedures”
to “all procedures that do not refer to the halting function”, we obtain a specification that may
be both consistent and computable. Equivalently, we may be able to compute the halting status
of all procedures in a Turing-Machine-equivalent language by writing a halting function in
another Turing-Machine-equivalent language, assuming that the procedures of the first language
cannot refer to the halting function written in the second language. In any case, we do not yet
have a proof that it is impossible.

I hope that the Specification Answer will become the standard for software engineering.

References

E.C.R.Hehner: a Practical Theory of Programming (book)

E.C.R.Hehner: the Halting Problem (papers)

E.C.R.Hehner: Formal Methods of Software Design (online course)

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/halting.html
http://www.cs.utoronto.ca/~hehner/FMSD

