
International Journal of Mathematical Sciences v.1 n.1 p.20-37, 2007; revised 2021-10-22 0

Unified Algebra
Eric C. R. Hehner

University of Toronto

Introduction
Mathematics has evolved. Bits of it are created by many people over a long time. The parts that
survive are sometimes the best parts, and sometimes not. Sometimes the survival of a
mathematical idea or notation has more to do with the personality of its creator than with its
merit. Evolution tends to create complexity. Often there are a variety of notations that serve the
same purpose (created by different people at different times) all in use in one paper.
Occasionally it seems worthwhile to try to design mathematics, rather than just to evolve some
more. When we design, we can strive for simplicity, which evolution never produces. When we
design, we evaluate, keeping just the parts that are useful, unifying the parts that are similar.

I present a unified algebra that includes what are commonly called boolean algebra, number
algebra, sets, lists, functions, quantification, type theory, and limits; this mathematics forms the
foundation for much of computer science. I present the notations and the rules for the conduct of
algebra, but it is not the purpose here to explore the possibilities for their use. I am laying
foundations, not building upon them; I am designing the instrument, not playing the music. To
appreciate the algebra, I rely on the reader's experience in using algebra. For motivations,
justifications, and commentary, I refer the reader to [0].

The algebra is presented from the very beginning, leaving out nothing. That makes the early
parts of the presentation very basic, but readers may appreciate the care and effort required to
design a simple and general algebra. And it's a nontrivial problem to get the presentation started
without ever saying “trust me for now, I'll make this clear later”. Anyone interested in
implementation on a computer must pay attention to micro-mechanical detail. The viewpoint I
adopt throughout is formalist, as required for implementation.

I begin with boolean algebra, renamed “binary algebra”, and its two extremes, renamed “top”
and “bottom”. That's the only new terminology. By contrast, standard terminology that I won't
be using includes: boolean, true, false, proposition, sentence, term, formula, conjunction,
conjunct, disjunction, disjunct, implication, implies, antecedent, consequent, axiom, theorem,
lemma, proof, inference, entailment, syntax, semantics, valid, predicate, quantifier, universal,
existential, and existence. I consider symbols and terminology to be a cost, not a benefit, when
defining mathematical structures. Unified algebra gives us much more mathematics for less cost
than our present collection of algebras.

http://www.cs.utoronto.ca/~hehner

Unified Algebra1

Contents
Introduction
Contents
Algebra

Expressions and Values
Expression Structure
Format
Constants, Variables, and Instantiation
Evaluation Rules

Binary Algebra
Preference

Ternary Algebra
Four and More Values
Common Laws
Number Algebra

Calculation
Variation
Context

Data Structures
Bunches
Sets
Strings
Lists

Functions
Operators on Functions
Function Inclusion
Function Composition
Operator-Function Composition
Selective Union

Lists are Functions
Limits
Conclusion
Acknowledgements
References and Sources
Appendix A
Appendix B 

Unified Algebra 2

Algebra
I will soon introduce binary algebra, ternary algebra, number algebra, the algebra of some data
structures, and function algebra. In this section I say what is common to all of them.

Expressions and Values

An algebra consists of expressions, which are used to express values in an application. For
examples, the values may be amounts of water, or voltage, or frequency of vibration, or guilt and
innocence. Here are four definitions that precede all choice of symbols and rules of any algebra.

Consistency: at most one value can be determined for each expression
Completeness: at least one value can be determined for each expression
Expressiveness: at least one expression can be determined for each value
Uniqueness: at most one expression can be determined for each value

To use an expression to express more than one value is a serious error called inconsistency.
Sometimes we may not say what value an expression expresses; that is called incompleteness.
For example, we will not be able to determine the value of 0/0 . (I prefer to avoid the question
of whether 0/0 has no value, or has a value but we cannot say what it is.) Consistency is
essential; completeness is not. Expressiveness is desirable; uniqueness is not. In general,
several expressions may represent the same value. When we say that 4+1 is 5 , we do not
mean that 4+1 and 5 are the same expression; clearly they are not. We mean that the value
represented by 4+1 is the value represented by 5 . When we say that 4+1 has value 5 , we
again mean that expression 4+1 represents the same value that expression 5 represents. We
might just as well say that 5 has value 4+1 (in fact, 5 is defined as 4+1). In other words, we
carelessly but harmlessly speak of an expression as being a value.

Expression Structure

An expression can be a part of a larger expression, in which case it is called a “subexpression” of
the larger expression. One way to make a larger expression from a subexpression is to write a
symbol, such as – , followed by the subexpression. The symbol is called an “operator”, and the
subexpression is called its “operand”. Another way to make a larger expression is to write two
subexpressions with a symbol, such as + , between them.

Placing operators between operands makes the structure of some expressions ambiguous. For
example, 2+3×4 might mean that 2 and 3 are added, and then the result is multiplied by 4 , or
that 2 is added to the result of multiplying 3 by 4 . To say which is meant, we can use
parentheses: either (2+3)×4 or 2+(3×4) . To prevent a clutter of parentheses, we decide on an
evaluation order. Here is the order of evaluation of all operators in this paper.

Unified Algebra3

0 constants ⊤ ⊥ 0 1 3.14 and so on
variables x y and so on
bracketed expressions () { } [] 〈 〉 within which the evaluation order again applies
subscript xn superscript xn right to left

1 adjacency f x left to right
2 one operand – ¢ $ ~ ↔ # → ∧ ∨ = ⧧ § + × ∨∧ ∧∨ ◊ right to left

two operands → right to left
3 two operands × / ∧ ∨ ⩟ ⊽ ⊻ left to right
4 two operands + – left to right
5 two operands , ,.. ⨩ ‘ ; ;.. ;; |

three operands ⊲⊳ evaluation order applies to first and last operands left to right
6 two operands = ⧧ < > ≤ ≥ : :: ∈
7 three operands ⊨ ⫤ evaluation order applies to first and last operands right to left

In the evaluation order, two-operand + can be found on level 4, and two-operand × on level 3;
that means, in the absence of parentheses, evaluate two-operand × before two-operand + . The
example 2+3×4 therefore means the same as 2+(3×4) . Within levels 1, 3, 4, and 5 evaluation is
from left to right. Within levels 2 and 7 evaluation is from right to left. On level 6, x=y=z
means the same as (x=y)∧(y=z) , and similarly for the other mixtures of operators on that level.

Format

To help the eye group the symbols properly, it is a good idea to leave space for absent
parentheses. The spacing in expression 2 + 3×4 is helpful; the spacing in 2+3 × 4 is misleading.

An expression that is too long to fit on one line must be broken into parts. There are several
reasonable ways to do it; here is one suggestion. A long expression in parentheses can be
broken at its main operator, which is placed under the opening parenthesis. For example,

(first part
+ second part)

A long expression without parentheses can be broken at its main operator, which is placed under
where the opening parenthesis belongs. For example,

first part
= second part

Attention to format makes a big difference in our ability to understand a complex expression.

Constants, Variables, and Instantiation

Constants and variables are kinds of expressions. In this paper we use single italic letters like x
for variables (but that's not a principle of unified algebra), and a variety of notations like 2 and
⊤ for constants. Expressions represent values; a constant represents a particular value, and a
variable represents an arbitrary value. A variable can be replaced by another expression; this is
called “instantiation”. A constant cannot be replaced. Expression –2 is called an “instance” of
expression –x . Here is how instantiation works.

• When the same variable occurs more than once in an expression, it must be replaced by the
same expression at each occurrence. Expression 2+2 is an instance of x+x , but 2+3 is not.
However, different variables may be replaced by the same or different expressions. Both
2+2 and 2+3 are instances of x+y . 

Unified Algebra 4

• We sometimes have to insert parentheses around expressions that are replacing variables in
order to maintain the expression structure. Expression –(2+3) is an instance of –x , but
–2+3 is not.

Evaluation Rules

Here are the rules to determine the value of expressions. The rules are independent of the choice
of expressions and values. (The examples use symbols, but the rules do not.)

Direct Rule An expression may be given a value by physical means, or by other means
outside the algebra. This is the way an algebra is applied.

Example: By marking numbers along a stick we give them length values.
Example: We might decide to use ⊤ to express truth and ⊥ to express falsity.

Indirect Rule An expression may be given a value by saying that it has the same value as
another expression whose value is already known. This rule is used in two
forms: value tables, and laws.

Example: In binary algebra, on one of the value tables, from the row labelled x∧y and
the column labelled ⊤⊤ , we will see that ⊤∧⊤ is ⊤ .

Example: From the first of the common laws, we will see that x=x is ⊤ .

Transparency Rule An expression does not change value when a subexpression is replaced by
another expression with the same value.

Example: If x and y have the same value, then x+z and y+z have the same value.

Consistency Rule If it would be inconsistent for an expression to have a particular value, then
it has another value. More generally, if it would be inconsistent for several
expressions to have a particular assignment of values, then they have
another assignment of values.

Example: In binary algebra, we will see from the value tables that if both x and x≤y
are ⊤ , then so is y .

Example: In binary algebra, we will see from the value tables that if –x is ⊤ , then x
is ⊥ .

Example: In binary algebra, we will see from the value tables that if x=y is ⊤ , then
x and y have the same value, and if x=y is ⊥ , then x and y have
different values.

Instance Rule If the value of an expression can be determined, then all its instances have
that value.

Example: Since x=x is ⊤ , therefore x + y×z = x + y×z is ⊤ .

Completion Rule If all ways of assigning values to its subexpressions give an expression the
same value, then it has that value.

Example: In binary algebra, we will see from the value tables that x∨–x is ⊤ .
Example: In binary algebra, we will see from the value tables that x∧–x is ⊥ .

Unified Algebra5

Binary Algebra
The expressions of binary algebra are called “binary expressions”. Binary expressions can be
used to represent anything that comes in two kinds, such as true and false statements, high and
low voltage, satisfactory and unsatisfactory computations, innocent and guilty behavior, north
and south poles of magnets. In any application of binary algebra, the two things being
represented are called the “binary values”. For examples, in one application the binary values
are truth and falsity; in another they are innocence and guilt. Binary expressions include:

⊤ “top”
⊥ “bottom”
–x “negate x ”
x=y “ x equal y ”
x⧧y “ x differ y ”
x<y “ x below y ”
x>y “ x above y ”
x≤y “ x at most y ”
x≥y “ x at least y ”  
x∧y “ x min y ”
x∨y “ x max y ”
x⩟y “ x negmin y ”
x⊽y “ x negmax y ”
x ⊨ y ⫤ z “if x then y else z ”

The two simplest binary expressions are ⊤ and ⊥ . Expression ⊤ represents one binary value,
and expression ⊥ represents the other. In the other binary expressions, the variables x , y , and
z may be replaced by any binary expressions. Whichever value is represented by expression x ,
expression –x represents the other value. This rule can be shown with the aid of a value table.

x ⎪ ⊤ ⊥

–x ⎪ ⊥ ⊤

This table says that –⊤ represents the same value that ⊥ represents, and that –⊥ represents
the same value that ⊤ represents. We can similarly show how to evaluate other binary
expressions.

x y ⎪ ⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

x=y ⎪ ⊤ ⊥ ⊥ ⊤
x⧧y ⎪ ⊥ ⊤ ⊤ ⊥
x<y ⎪ ⊥ ⊥ ⊤ ⊥
x>y ⎪ ⊥ ⊤ ⊥ ⊥
x≤y ⎪ ⊤ ⊥ ⊤ ⊤
x≥y ⎪ ⊤ ⊤ ⊥ ⊤
x∧y ⎪ ⊤ ⊥ ⊥ ⊥
x∨y ⎪ ⊤ ⊤ ⊤ ⊥
x⩟y ⎪ ⊥ ⊤ ⊤ ⊤
x⊽y ⎪ ⊥ ⊥ ⊥ ⊤

x y z ⎪ ⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

x ⊨ y ⫤ z⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

Unified Algebra 6

Preference

We have two binary values, and so far we have not shown any preference for one over the other.
Now we shall show a preference for expressions with the value of ⊤ in four ways. One way is
to abbreviate the statement “Expression x has the same value as ⊤ .” by just writing x , without
saying anything about it. Whenever we just write a binary expression, we mean that it has the
same value as ⊤ (expresses the same value that ⊤ expresses). For example, instead of saying
“Expression ⊤=⊤ has the same value as ⊤ .” we just say “ ⊤=⊤ ” (“top equals top”; remember
that truth is just one of the binary values in just one of the applications).

Another way we show a preference is by the use of the words “solution” and “law”. A solution
to a binary expression is an assignment of values to its variables that gives it the value of ⊤ ; we
have no name for an assignment that gives it the value of ⊥ . A law is a binary expression for
which any assignment of values to its variables gives it the value ⊤ , and so by the Completion
Rule it too has the value ⊤ ; we have no name for a binary expression that has the value ⊥ .

We often use the Indirect Rule by stating that an expression is a law, which means we are
assigning it the same value as ⊤ . If we want to assign ⊥ 's value to expression x , instead we
state the law –x , and then rely on the Consistency Rule to say that x is ⊥ . In other algebras, if
we want to say that x has the same value as y (not a binary value), instead we say that x=y has
the same value as ⊤ , or more briefly, we say x=y .

The final way we show a preference is in the applications of binary algebra. When we apply it to
reasoning, we choose to use ⊤ for true statements and ⊥ for false statements. When we use
binary expressions as specifications, we choose to use ⊤ for satisfactory objects, and ⊥ for
unsatisfactory objects. When we use binary expressions to codify laws, we choose to use ⊤ for
innocent behavior and ⊥ for guilty behavior. In each case we could just as well have chosen to
use ⊤ and ⊥ the other way round, but the tradition is to use ⊤ for the preferable value.

Ternary Algebra
Between the two values represented by ⊤ and ⊥ , we now consider another value, represented
by 0 (pronounced “zero”). Ternary algebra can be applied to anything that comes in three
kinds. In one application, the three expressions ⊤ , 0 , and ⊥ represent the values “yes”,
“maybe”, and “no”. In another, they represent the values “large”, “medium”, and “small”. An
assignment of values to variables that gives an expression the value 0 is called a “root” of the
expression.

The expressions of ternary algebra, called “ternary expressions”, include all those of binary
algebra. To determine the value of these ternary expressions, we extend the value tables.

x ⎪ ⊤ 0 ⊥

–x ⎪ ⊥ 0 ⊤

Unified Algebra7

x y ⎪ ⊤⊤ ⊤0 ⊤⊥ 0⊤ 00 0⊥ ⊥⊤ ⊥0 ⊥⊥

x=y ⎪ ⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤
x⧧y ⎪ ⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊥
x<y ⎪ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥
x>y ⎪ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
x≤y ⎪ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊤
x≥y ⎪ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤
x∧y ⎪ ⊤ 0 ⊥ 0 0 ⊥ ⊥ ⊥ ⊥
x∨y ⎪ ⊤ ⊤ ⊤ ⊤ 0 0 ⊤ 0 ⊥
x⩟y ⎪ ⊥ 0 ⊤ 0 0 ⊤ ⊤ ⊤ ⊤
x⊽y ⎪ ⊥ ⊥ ⊥ ⊥ 0 0 ⊥ 0 ⊤

When the variables have binary values, each expression has the same value as it had in binary
algebra; in that sense, we have extended binary algebra to ternary algebra in a consistent way.
All our future extensions will likewise be consistent. The expression x=–x has no solution in
binary algebra because both assignments of binary values give it the value ⊥ ; in ternary
algebra it has solution 0 . The expression x∨–x is a law of binary algebra because both
assignments of binary values to variable x give it the value ⊤ ; but it is not a law of ternary
algebra because when x is 0 , x∨–x is 0 . By extending the algebra, we have gained some
solutions and lost some laws.

We can add many new ternary expressions. For examples, we can add approximate equality and
modular (circular) addition with the value table:

x y ⎪ ⊤⊤ ⊤0 ⊤⊥ 0⊤ 00 0⊥ ⊥⊤ ⊥0 ⊥⊥

x≈y ⎪ ⊤ 0 ⊥ 0 0 0 ⊥ 0 ⊤
x⊕y ⎪ ⊥ ⊤ 0 ⊤ 0 ⊥ 0 ⊥ ⊤

Four and More Values
To design a four-valued algebra as a consistent extension of ternary algebra, we add a new value
represented by θ . Like 0 , θ is equal to its own negation, and is situated between ⊤ and ⊥ ,
but 0 and θ are unequal and unrelated in the ordering. There are two other ways to design a
four-valued algebra as a consistent extension of binary algebra. And there are many interesting
algebras with more values. We now leap to an infinite-valued totally-ordered algebra. Value
tables, which are already cumbersome for ternary algebra (x ⊨ y ⫤ z takes 27 columns), become
impossible with infinitely many values, so from now on we give values to new expressions by
stating laws.

Common Laws
I have introduced binary and ternary expressions, and mentioned expressions of four or more
values. I am about to introduce numbers, bunches, sets, strings, lists, and functions by saying
how to write them and giving their laws. There are some laws of binary algebra that are not laws
of any other algebra; for examples,

Unified Algebra 8

(x≤y) = –x ∨ y material order
((x=y)=z) = (x=(y=z)) associative
((x⧧y)⧧z) = (x⧧(y⧧z)) associative
(x=⊤) = x identity
(x⧧⊥) = x identity

The next two expressions are laws of binary algebra, and one of the four-valued algebras
mentioned in the previous section, but not of any other algebra mentioned in this paper.

x∨–x excluded middle
–(x∧–x) noncontradiction

There are laws of some of our algebras that are not laws of binary algebra, but only because they
employ symbols that are not symbols of binary algebra. Any law of any of our algebras that
employs only the symbols of binary algebra is also a law of binary algebra.

There are many laws that are common to all of the algebras in this paper; for examples,
⊥ ≤ x ≤ ⊤ extremes
x∧⊥ = ⊥ base
x∨⊤ = ⊤ base
x⩟⊥ = ⊤ base
x⊽⊤ = ⊥ base
x∧⊤ = x identity
x∨⊥ = x identity
x = x reflexivity
x ≤ x reflexivity
x ≥ x reflexivity
–(x<x) irreflexivity
–(x>x) irreflexivity
– –x = x double negation or self-inverse
x∧x = x idempotence
x∨x = x idempotence
(x=y) = (y=x) symmetry
(x⧧y) = (y⧧x) symmetry
x∧y = y∧x symmetry
x∨y = y∨x symmetry
x⩟y = y⩟x symmetry
x⊽y = y⊽x symmetry
–(x < y < x) antisymmetry
–(x > y > x) antisymmetry
–(x < y = x) exclusivity
–(x > y = x) exclusivity
(x≤y) = (x<y) ∨ (x=y) inclusivity
(x≥y) = (x>y) ∨ (x=y) inclusivity
(x>y) = (y<x) mirror
(x≥y) = (y≤x) mirror
(x<y) = (–x>–y) reflection
(x∧y = x) = (x≤y) = (y = x∨y) connection
x∧(x∨y) = x absorption
x∨(x∧y) = x absorption
–(x=y) = (–x ⧧ –y) duality
–(x⧧y) = (–x = –y) duality

Unified Algebra9

–(x<y) = (–x ≤ –y) duality
–(x≤y) = (–x < –y) duality
–(x>y) = (–x ≥ –y) duality
–(x≥y) = (–x > –y) duality
–(x∧y) = –x ∨ –y duality
–(x∨y) = –x ∧ –y duality
–(x⩟y) = –x ⊽ –y duality
–(x⊽y) = –x ⩟ –y duality
x∧(x≤y) ≤ y modus ponens
(x⧧y) = –(x=y) unequality
x⩟y = –(x∧y) negmin
x⊽y = –(x∨y) negmax
(x∧y)∧z = x∧(y∧z) associativity
(x∨y)∨z = x∨(y∨z) associativity
(x = y = z) ≤ (x=z) transitivity
(x < y < z) ≤ (x<z) transitivity
(x > y > z) ≤ (x>z) transitivity
(x ≤ y ≤ z) ≤ (x≤z) transitivity
(x ≥ y ≥ z) ≤ (x≥z) transitivity
x∧y ≤ y ≤ y∨z specialization and generalization
x∧(y∨z) = (x∧y) ∨ (x∧z) distribution or factoring
x∨(y∧z) = (x∨y) ∧ (x∨z) distribution or factoring
(x ≤ y∧z) = (x≤y) ∧ (x≤z) distribution or factoring
(x ≤ y∨z) ≥ (x≤y) ∨ (x≤z) distribution or factoring
(x∧y ≤ z) ≥ (x≤z) ∨ (y≤z) antidistribution
(x∨y ≤ z) = (x≤z) ∧ (y≤z) antidistribution
(w∧x) ∨ (y∧z) ≤ (w∨y) ∧ (x∨z)
(⊤ ⊨ x ⫤ y) = x base
(⊥ ⊨ x ⫤ y) = y base
– (x ⊨ y ⫤ z) = (x ⊨ –y ⫤ –z) distribution or factoring
w ∧ (x ⊨ y ⫤ z) = (x ⊨ w∧y ⫤ w∧z) distribution or factoring
w ∨ (x ⊨ y ⫤ z) = (x ⊨ w∨y ⫤ w∨z) distribution or factoring

It is an interesting mathematical exercise to find a minimal set of laws for an algebra. But those
who wish to use the algebra need to know many laws, and to them minimality is of no concern.
In this paper, no attention has been paid to minimality.

Number Algebra
I now introduce infinitely many expressions between ⊤ and ⊥ . Here are some of them.

⊥ –3 –2 –1 0 1 2 3 ⊤
All operators apply to all values.

The expressions of number algebra are called “number expressions”. They can be used to
represent anything that comes in quantities, such as apples and water (⊤ represents an infinite
quantity, and ⊥ represents an infinite deficit). Expressions are formed as follows.

Unified Algebra 10

any sequence of one or more decimal digits, such as 5296
any of the ways of forming an expression presented previously, such as
–5296 or 5296∧375 or 5296=375
x+y “ x plus y ”
x–y “ x minus y ”
x×y “ x times y ”
x/y “ x divided by y ”, “ x over y ”
xy “ x to the power y ”

Anyone is welcome to invent new expressions and add them to the list.

Now that we have new expressions, we assign some of them the same value as ⊤ . In these
laws, d is a sequence of (zero or more) digits.

d0+1 = d1 counting
d1+1 = d2 counting
d2+1 = d3 counting
d3+1 = d4 counting
d4+1 = d5 counting
d5+1 = d6 counting
d6+1 = d7 counting
d7+1 = d8 counting
d8+1 = d9 counting
d9+1 = (d+1)0 for nonempty d counting
9+1 = 10 counting
x+0 = x identity
x+y = y+x symmetry
x+(y+z) = (x+y)+z associativity
(⊥<x<⊤) ≤ ((x+y = x+z) = (y=z)) cancellation
(⊥<x) ≤ (⊤+x = ⊤) absorption
(x<⊤) ≤ (⊥+x = ⊥) absorption
x + y∧z = (x+y) ∧ (x+z) distributivity or factoring
x + y∨z = (x+y) ∨ (x+z) distributivity or factoring
x + y⩟z = (x–y) ∨ (x–z)
x + y⊽z = (x–y) ∧ (x–z)
w + (x ⊨ y ⫤ z) = (x ⊨ w+y ⫤ w+z) distributivity or factoring
w – (x ⊨ y ⫤ z) = (x ⊨ w–y ⫤ w–z) distributivity or factoring
w × (x ⊨ y ⫤ z) = (x ⊨ w×y ⫤ w×z) distributivity or factoring
w / (x ⊨ y ⫤ z) = (x ⊨ w/y ⫤ w/z) distributivity or factoring
–x = 0–x negation
–(x+y) = –x + –y distributivity or factoring
–(x–y) = –x – –y distributivity or factoring
(–x)×y = –(x×y) = x×(–y) semidistributivity
(–x)/y = –(x/y) = x/(–y) semidistributivity
x–y = –(y–x) antisymmetry
x–y = x + –y
x + (y – z) = (x + y) – z associativity
(⊥<x<⊤) ≤ ((x–y = x–z) = (y=z)) cancellation
(⊥<x<⊤) ≤ (x–x = 0) inverse
(x<⊤) ≤ (⊤–x = ⊤) absorption
(⊥<x) ≤ (⊥–x = ⊥) absorption

Unified Algebra11

(⊥<x<⊤) ≤ (x×0 = 0) base
x×1 = x identity
x×y = y×x symmetry
x×(y+z) = x×y + x×z distributivity or factoring
x×(y×z) = (x×y)×z associativity
(⊥<x<⊤) ∧ (x⧧0) ≤ ((x×y = x×z) = (y=z)) cancellation
(0<x) ≤ (x×⊤ = ⊤) absorption
(0<x) ≤ (x×⊥ = ⊥) absorption
x/1 = x identity
(⊥<x<⊤) ∧ (x⧧0) ≤ (x/x = 1) inverse
(⊥<x<⊤) ∧ (x⧧0) ≤ (0/x = 0) base
x×(y/z) = (x×y)/z = (x/z)×y = x/(z/y) multiplication-division
(x/y)/z = x/(y×z) multiplication-division
(⊥<x<⊤) ≤ (x/⊤ = 0 = x/⊥) annihilation
(⊥<x<⊤) ≤ (x0 = 1) base
x1 = x identity
⊥<0<1<⊤ direction
(⊥<x<⊤) ≤ ((x+y < x+z) = (y<z)) cancellation, translation
(0<x<⊤) ≤ ((x×y < x×z) = (y<z)) cancellation, scale
(x<y) ∨ (x=y) ∨ (x>y) trichotomy

Calculation

Given an expression, we might find a simpler expression with the same value. For example,
x×(z+1) – y×(z–1) – z×(x–y) distribute

= (x×z + x×1) – (y×z – y×1) – (z×x – z×y) unity and double negation
= x×z + x – y×z + y – z×x + z×y symmetry and associativity
= x + y + (x×z – x×z) + (y×z – y×z) zero and identity
= x+y

The entire five lines (without the hints that appear to the right) form one binary expression
meaning the same as

(x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) – (z×x – z×y))
∧ ((x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z + y – z×x + z×y)
∧ (x×z + x – y×z + y – z×x + z×y = x + y + (x×z – x×z) + (y×z – y×z))
∧ (x + y + (x×z – x×z) + (y×z – y×z) = x+y)

By simply writing it, we are saying that it has the same value as ⊤ . The hint “distribute” is
intended to make it clear that

x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) – (z×x – z×y)
is ⊤ ; the hint “unity and double negation” is intended to make it clear that

(x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z + y – z×x + z×y
is ⊤ ; and so on. By the transitivity of = and the Consistency Rule we see that

x×(z+1) – y×(z–1) – z×(x–y) = x+y
is ⊤ , and so x×(z+1) – y×(z–1) – z×(x–y) and x+y have the same value.

We can use operators other than = down the left side of a calculation, even a mixture, as long as
there is transitivity. For example, if x is a real-valued variable,

Unified Algebra 12

x×(x + 2) distribute
= x2 + 2×x identity and zero
= x2 + 2×x + 1 – 1 factor
= (x+1)2 – 1 a square is nonnegative
≥ –1

tells us that x×(x+2) ≥ –1 is ⊤ .

The level of hint depends on the knowledge of the intended audience. A hint may refer to some
laws, or to a calculation done elsewhere, or to some missing steps that a knowledgeable reader
could reasonably be expected to supply. If the calculation is input to an automated tool, few
hints are needed, and they must be expressed formally, but we do not pursue that here.

The laws do not enable us to simplify 1/0 and 0/0 . But they do enable us to simplify 1/0 = 1/0
and 0/0 = 0/0 and ⊥ ≤ 1/0 ≤ ⊤ and ⊥ ≤ 0/0 ≤ ⊤ and 1/0 + 0 = 1/0 and 0/0 + 0 = 0/0 to ⊤ .

Variation

One effective way of calculating is to increase or decrease an expression by increasing or
decreasing a subexpression. We “increase” x∧y by increasing y . We increase –x by
decreasing x . As an example, let a and b be binary.

a ⩟ (a⊽b) use negmin and negmax laws
= –(a ∧ –(a∨b)) “decrease” a∨b to a and so decrease the whole expression
≥ –(a ∧ –a) noncontradiction
= ⊤

And so a ⩟ (a⊽b) is above or equal to ⊤ , and since there is nothing above ⊤ , it is ⊤ . By
“increase” we mean increase or leave the same; by “decrease” we mean decrease or leave the
same.

Here is a catalogue of variations for use in calculations.
–x varies inversely with x .
x+y varies directly with x and directly with y .
x–y varies directly with x and inversely with y .
x∧y varies directly with x and directly with y .
x∨y varies directly with x and directly with y .
x⩟y varies inversely with x and inversely with y .
x⊽y varies inversely with x and inversely with y .
x<y varies inversely with x and directly with y .
x>y varies directly with x and inversely with y .
x≤y varies inversely with x and directly with y .
x≥y varies directly with x and inversely with y .
x ⊨ y ⫤ z varies directly with y and directly with z .

Context

Consider an expression of the form x∧y where x and y are binary. When we are simplifying
x , we can suppose that y has value ⊤ . If y really does have value ⊤ , then we have done
nothing wrong. If y has value ⊥ , then x∧y has value ⊥ no matter which value x has; so no
matter how we change x , we don't change the value of x∧y . For exactly the same reason, we
can suppose that x has value ⊤ when we are simplifying y . However, we cannot make both

Unified Algebra13

suppositions simultaneously and simplify both x and y at the same time. (If we could, then
x∧x could be simplified to ⊤ .)

Here is an example.
(x + x×y + y = 5) ∧ (x – x×y + y = 1) subtract and add 2×x×y

= (x – x×y + y + 2×x×y = 5) ∧ (x – x×y + y = 1) use second part to simplify first
= (1 + 2×x×y = 5) ∧ (x – x×y + y = 1) simplify
= (2×x×y = 4) ∧ (x – x×y + y = 1) simplify
= (x×y = 2) ∧ (x – x×y + y = 1) use first part to simplify second
= (x×y = 2) ∧ (x – 2 + y = 1) simplify
= (x×y = 2) ∧ (x+y = 3)
≥ (x=1) ∧ (y=2)

We can generalize this sort of reasoning to apply to number expressions.
In x<y , when simplifying x , we can assume y is not ⊥ ;

when simplifying y , we can assume x is not ⊤ .
In x>y , when simplifying x , we can assume y is not ⊤ ;

when simplifying y , we can assume x is not ⊥ .
In x≤y , when simplifying x , we can assume y is not ⊤ ;

when simplifying y , we can assume x is not ⊥ .
In x≥y , when simplifying x , we can assume y is not ⊥ ;

when simplifying y , we can assume x is not ⊤ .
In x∧y , when simplifying x , we can assume y is not ⊥ ;

when simplifying y , we can assume x is not ⊥ .
In x∨y , when simplifying x , we can assume y is not ⊤ ;

when simplifying y , we can assume x is not ⊤ .
In x⩟y , when simplifying x , we can assume y is not ⊥ ;

when simplifying y , we can assume x is not ⊥ .
In x⊽y , when simplifying x , we can assume y is not ⊤ ;

when simplifying y , we can assume x is not ⊤ .
In x ⊨ y ⫤ z , when simplifying y , we can assume x is not ⊥ ;

when simplifying z , we can assume x is not ⊤ ;
when simplifying x , we can assume y is not z .

Data Structures
A data structure is a collection, or aggregate, of data. The kinds of structuring we consider are
packaging and indexing. These two kinds of structure give us four data structures.

unpackaged, unindexed: bunch
packaged, unindexed: set
unpackaged, indexed: string
packaged, indexed: list

Bunches

A bunch represents a collection of objects. For contrast, a set represents a collection of objects in
a package or container. The contents of a set is a bunch. These vague descriptions are made
precise as follows.

Unified Algebra 14

Any binary or number or set (see later) is an elementary bunch, or element. For example, the
number 2 is an elementary bunch, or synonymously, an element. Indeed, every expression is a
bunch expression, though not all are elementary.

If A and B are bunches, then
A , B “ A union B ”
A ‘ B “ A intersection B ”
A ⨩ B “ A remove B ”

are bunches,
¢A “size of A ”

is a number, and
A: B “ A is in B ”, “ A is included in B ”
A:: B “ A includes B ”

are binary expressions.

The size of a bunch is the number of elements it includes. Elements are bunches of size 1 .
¢2 = 1
¢(0, 2, 5, 9) = 4

Here are three examples of bunch inclusion.
2: 0, 2, 5, 9
2: 2
2, 9: 0, 2, 5, 9

The first says that 2 is in the bunch consisting of 0, 2, 5, 9 . The second says that 2 is in the
bunch consisting of only 2 . Note that we do not say “a bunch contains its elements”, but rather
“a bunch consists of its elements”. The third example says that both 2 and 9 are in 0, 2, 5, 9 ,
or in other words, the bunch 2, 9 is included in the bunch 0, 2, 5, 9 . Reverse inclusion :: is
the reverse of inclusion : .

0, 2, 5, 9:: 2, 9

I earlier made the statement “We must never use an expression to express more than one value;
to do so would be a serious error called inconsistency.”. I now amend that statement to say “We
must never use an elementary expression to express more than one value.”. Bunch expressions
can indeed represent more than one value; that is their purpose, and we do not call it
“inconsistency”.

Here are the bunch laws. In these laws, x and y are elements (elementary bunches), and A ,
B , and C are arbitrary bunches.

(x: y) = (x=y) elementary
(x: A, B) = (x: A) ∨ (x: B) union
(x: A⨩B) = (x: A) ∧ –(x: B) removal
A, A = A idempotence
A, B = B, A symmetry
A, (B, C) = (A, B), C associativity
A‘A = A idempotence
A‘B = B‘A symmetry
A‘(B‘C) = (A‘B)‘C associativity
A⨩(B, C) = (A⨩B)⨩C removal
A‘(B⨩C) = (A‘B)⨩C = B‘(A⨩C) removal
(A, B: C) = (A: C) ∧ (B: C) antidistributivity

Unified Algebra15

(A: B‘C) = (A: B) ∧ (A: C) distributivity
A: A, B generalization
A‘B: A specialization
A: A reflexivity
(A: B) ∧ (B: A) = (A=B) antisymmetry
(A: B) ∧ (B: C) ≤ (A: C) transitivity
(A:: B) = (B: A) mirror
¢x = 1 size
¢(A, B) + ¢(A‘B) = ¢A + ¢B size
– (x: A) ≤ (¢(x‘A) = 0) size
(A: B) ≤ (¢A ≤ ¢B) size

For other laws see [1].

Here are several bunches that are useful enough to be named:
null empty includes nothing
bin the binaries includes ⊤, ⊥
nat the naturals includes 0, 1, 2, and more
int the integers includes –2, –1, 0, 1, 2, and more
rat the rationals includes –1, 0, 2/3, and more
real the reals includes –1, 0, 2/3, 21/2, and more

We define them formally in a moment.

The operators , ⨩ ‘ ¢ : :: = ⧧ ⊨ ⫤ apply to bunch operands according to the laws already
presented. Other operators can be applied to bunches by applying them to the elements of the
bunch. For examples,

–(2, 3, 5) = –2, –3, –5
(2, 3, 5) + (1, 7) = 3, 4, 6, 9, 10, 12

The laws for – and + applied to bunches are
–null = null base
–(A, B) = –A, –B distribution or factoring
A+null = null base
A+(B, C) = A+B, A+C distribution or factoring

and there are similar laws for other operators. This makes it easy to express the plural naturals
(nat+2) , the even naturals (nat×2) , the square naturals (nat2) , the natural powers of two
(2nat) , and many other things.

We define the empty bunch, null , by the laws
null: A
(¢A = 0) = (A = null)

Bunch null is the identity for bunch union.
A, null = null = null, A

The bunch bin is defined by the law bin = ⊤, ⊥ .

The bunch nat is defined by two laws.
0, nat+1: nat construction
(0, B+1: B) ≤ (nat: B) induction

The first, construction, says that 0, 1, 2, and so on, are in nat . The second, induction, says that
nothing else is in nat by saying that of all the bunches satisfying the construction law, nat is

Unified Algebra 16

the smallest. Now that we have nat , we can define int and rat as follows:
int = nat, –nat
rat = int/(nat+1)

The law defining real will be given later in the section titled “Limits”.

We also use the notation
m,..n “ m to n ”

where m is integer, and n is integer or binary, and m≤n . This notation means the bunch
m, m+1, m+2, up to but not including n . The asymmetric notation is a reminder that the left end
is included but the right end is excluded. Here are its laws:

(x: m,..n) = (x: int) ∧ (m≤x<n)
¢(m,..n) = n–m

And here are three examples:
0,..3 = 0, 1, 2
0,..0 = null
0,..⊤ = nat

Now that we have bunches, we can add some new number laws:
bin: x/0 division by 0
real: 0/0 division by 0
xy+z : xy × xz adding exponents
xy×z : (xy)z multiplying exponents

In the laws “adding exponents” and “multiplying exponents”, the inclusion, rather than equality,
is necessary because numbers may have multiple roots.

Sets

Let A be any bunch (anything). Then
{A} “set containing A ”

is a set. Thus {null} is the empty set, and the set containing the first three natural numbers is
{0, 1, 2} or {0,..3} , and {nat} is the set of natural numbers. All sets are elements; not all
bunches are elements; that is the difference between sets and bunches. We can form the bunch
1, {3, 7} consisting of two elements, and from it the set {1, {3, 7}} containing two elements,
and in that way we build a structure of nested sets. Set formation has an inverse. If S is any set,
then

~S “contents of S ”
is its contents. For example,

~{0, 1} = 0, 1

Now that we have bunches, the laws of sets are easily stated. Let S be a set, and let A and B
be anything.

{~S} = S set formation
~{A} = A contents
{A} ⧧ A structure
${A} = ¢A size
(A ∈ {B}) = (A: B) element
({A} ≤ {B}) = (A: B) subset
({A}: B) = (A: B) power
{A} ∨ {B} = {A, B} union

Unified Algebra17

{A} ∧ {B} = {A ‘ B} intersection
{A} ⊻ {B} = {A⨩B} removal
({A} = {B}) = (A = B) equation
({A} ⧧ {B}) = (A ⧧ B) unequation

Note that the element, subset, and power laws are all just bunch inclusion.

Strings

Just as bunches and sets are, respectively, unpackaged and packaged collections, so strings and
lists are, respectively, unpackaged and packaged sequences. There are sets of sets, and lists of
lists, but there are neither bunches of bunches nor strings of strings.

The simplest string is
nil the empty string

Any binary, number, set, list (see later), and function (see later) is a one-item string, or item. For
example, the number 2 is a one-item string, or item. A nonempty bunch of items is also an
item. Strings are joined together by semicolons to make longer strings. For example,

4; 2; 4; 6
is a four-item string. The length of a string is the number of items, and is obtained by the ↔
operator.

↔(4; 2; 4; 6) = 4

The index of an item is the number of items that precede it. In other words, indexing is from 0 .
An index is not an arbitrary label, but a measure of how much has gone before. Your life begins
at year 0 , a highway begins at mile 0 , and so on. We refer to the items in a string as “item 0”,
“item 1”, “item 2”, and so on; we never say “the third item” due to the possible confusion
between item 2 and item 3. We obtain an item of a string by subscripting. For example,

(3; 5; 7; 9)2 = 7
In general, Sn is item n of string S . We can even pick out a bunch of items, or a string of
items, as in the following examples.

(3; 5; 7; 9)1, 2 = 5, 7
(3; 5; 7; 9)2; 1; 2 = 7; 5; 7

Strings can be compared for equality and order. To be equal, strings must be of equal length, and
have equal items at each index. The order of two strings is determined by the items at the first
index where they differ. For example,

3; 6; 4; 7 < 3; 7; 2
If there is no index where they differ, the shorter string comes before the longer one.

3; 6; 4 < 3; 6; 4; 7
This ordering is known as lexicographic order; it is the ordering used in dictionaries.

If i is an item, S and T are strings, and n is a natural number, then
nil the empty string
i an item
S;T “ S join T ”
ST “ S sub T ”
S∧T “ S min T ”
S∨T “ S max T ”
S⊲n⊳i “ S but at n there's i ”

Unified Algebra 18

are strings, and
↔S “length of S ”

is a natural number or ⊤ , and
S=T “ S equals T ”
S⧧T “ S differs from T ”
S<T “ S is less than T ”
S>T “ S is greater than T ”
S≤T “ S is at most T ”
S≥T “ S is at least T ”

are binary.

Here are the laws of string algebra. In these laws, S , T , and U are strings, and i and j are
items.

nil; S = S = S; nil Snull = null
S; (T; U) = (S; T); U ST, U = ST , SU
↔nil = 0 S{T} = {ST}
↔i = 1 Snil = nil
↔(S; T) = ↔S + ↔T ST; U = ST ; SU
(↔S<⊤) ≤ ((S; i; T)↔S = i) S(TU) = (ST)U
(↔S<⊤) ≤ ((i=j) = (S; i; T = S; j; T)) (↔S<⊤) ≤ ((i<j) ≤ (S; i; T < S; j; U))
(↔S<⊤) ≤ (S;i;T ⊲ ↔S ⊳ j = S;j;T) (↔S<⊤) ≤ (nil ≤ S < S; i; T)

We also use the notation
x;..y “ x to y ” (same pronunciation as x,..y)

where x is an integer, and y is an integer or binary, and x≤y . As in the similar bunch notation,
x is included and y excluded, so that

x;..x = nil
x;..x+1 = x
(x;..y) ; (y;..z) = x;..z
↔(x;..y) = y–x

String join distributes over bunch union. Let A , B , C , and D be bunches of strings.
A; null; B = null base
(A, B); (C, D) = (A;C), (A;D), (B;C), (B;D) distribution or factoring
¢ nil = 1
¢(A; B) ≤ ¢A × ¢B

So a string of bunches is equal to a bunch of strings. Thus, for examples,
0; (1, 2); 3 = 0; 1; 3, 0; 2; 3
0; 1; 2: nat; 1; (0,..10)

because 0: nat and 1: 1 and 2: 0,..10 .

Lists

A list is a packaged string. For example,
[0; 1; 2]

is a list of three items. List brackets [] distribute over bunch union.
[null] = null base
[A, B] = [A], [B] distribution or factoring

Because of the distribution we can say

Unified Algebra19

[0; 1; 2]: [nat; 1; (0,..10)]
On the left of the colon we have a list of integers; on the right we have a list of bunches, or
equivalently, a bunch of lists.

Let S be a string, L and M be lists, n be a natural number, and i be an item. Then
[S] “list containing S ”
L M “ L M ” or “ L composed with M ”
L;;M “ L join M ”
n→i | L “ n maps to i otherwise L ”
L∧M “ L min M ”
L∨M “ L max M ”

are lists,
L n “ L n ” or “ L index n ”

is an item,
~L “contents of L ”

is a string,
#L “length of L ”

is a natural number or ⊤ ,
☐L “domain of L ”

is a bunch of naturals, and
L=M “ L equals M ”
L⧧M “ L differs from M ”
L<M “ L is less than M ”
L>M “ L is greater than M ”
L≤M “ L is at most M ”
L≥M “ L is at least M ”

are binary.

Parentheses may be used around any expression, so we may write L(n). Parentheses must be
used when required by the evaluation order; for example, L (n+1) . But we cannot write Ln
without a space between L and n because that would be a single multicharacter name.

The contents of a list is the string of items it contains.
~[3; 5; 7; 4] = 3; 5; 7; 4

The domain of a list is its indexes.
☐[3; 5; 7; 4] = 0, 1, 2, 3

The length of a list is the number of items it contains.
#[3; 5; 7; 4] = 4

List indexes, like string indexes, start at 0 . An item can be selected from a list by placing its
index after the list.

[3; 5; 7; 4] 2 = 7

When a list is indexed by a list, we get a list of results. For example,
[3; 5; 7; 4] [2; 1; 2] = [7; 5; 7]

More generally, strings and lists can be indexed by any structure, and the result has that same
structure. Here is a fancy string example. Let S = 10; 11; 12 . Then

S0, {1, [2; 1]; 0}
= S0, {S1, [S2; S1]; S0}
= 10, {11, [12; 11]; 10}

Unified Algebra 20

Here is a fancy list example. Let L = [10; 11; 12] . Then
L (0, {1, [2; 1]; 0})

= L 0, {L 1, [L 2; L 1]; L 0}
= 10, {11, [12; 11]; 10}

Here are the laws. Let A and B be bunches, let S , T , and U be strings, and let L be a list.
Snull = null L null = null
SA,B = SA, SB L (A, B) = L A, L B
S{A} = {SA} L {A} = {L A}
Snil = nil L nil = nil
ST;U = ST ; SU L (S; T) = L S; L T
S[T] = [ST] L [S] = [L S]

List join is written as a pair of semicolons.
[3; 5; 7; 4];;[2; 1; 2] = [3; 5; 7; 4; 2; 1; 2]

The notation n→i | L gives us a list just like L except that item n is i .
2→22 | [10;..15] = [10; 11; 22; 13; 14]
2→22 | 3→33 | [10;..15] = [10; 11; 22; 33; 14]

Let L = [10;..15] . Then
2→L3 | 3→L2 | L = [10; 11; 13; 12; 14]

The order operators < ≤ > ≥ apply to lists; the order is lexicographic, just like string order.

Here are the laws. Let S and T be strings, let L , m , n , and P be a list, let i and j be
items, and let n be a natural number.

[S] ⧧ S structure
~[S] = S contents
[~L] = L formation
#[S] = ↔S length
#(L, M) = #L ∧ #M length
☐L = 0,..#L domain
☐(L, M) = ☐L ‘ ☐M domain
[S];;[T] = [S; T] join
[S] T = ST indexing
[S] [T] = [ST] = S[T] indexing
n→i | [S] = [S⊲n⊳i] modification
(S: T) ≤ ([S]: [T]) inclusion
L;;M : L inclusion
([S] = [T]) = (S = T) equation
([S] < [T]) = (S < T) order
L;;null = null = null;;L distribution
(L, M);;(N, P) = (L;;N), (L;;P), (M;;N), (M;;P) distribution
(L M) n = L (M n) composition
(L M) N = L (M N) associativity
L (M;;N) = L M ;; L N distributivity or factoring

A list includes all its extensions. For example,
[0; 1; 2; 3; 4] : [0; 1; 2]

Informally, list [0; 1] can be thought of as [0; 1; undefined; undefined; and so on forever] . Its
length and domain take you to the end of the defined part. Therefore [nil] includes all lists. The
reason for this will be explained later in the Section Lists are Functions. 

Unified Algebra21

Lists can be items in a list. For example, let
A = [[6; 3; 7; 0] ;

[4; 9; 2; 5] ;
[1; 5; 8; 3]]

Then A is a 2-dimensional array, or more particularly, a 3×4 array. Indexing A with one index
gives a list

A 1 = [4; 9; 2; 5]
which can then be indexed again to give a number.

A 1 2 = 2
Note that A (1, 2) = A 1, A 2 = [4; 9; 2; 5], [1; 5; 8; 3] ⧧ 2 = A 1 2
and A [1, 2] = [A 1, A 2] = [A 1], [A 2] = [[4; 9; 2; 5]], [[1; 5; 8; 3]] ⧧ 2 = A 1 2 .

Functions
A function introduces a local variable with two expressions called the “domain” and “result”. It
is written in the following form:

〈variable: domain· result〉
The scope of the variable begins at the opening angle bracket and extends to the closing angle
bracket. All the laws in the context of the function that do not mention the variable are
applicable within the function. The local variable is an element, and variable: domain is a local
law within the function. For example, the successor function

〈n: nat· n+1〉
introduces local variable n with domain nat and result n+1 .

As a short form, we can omit the domain and its preceding colon when the domain is known or
irrelevant. For example, suppose the surrounding commentary has made it clear that the domain
is nat . Then we can write the successor function in the preceding paragraph as

〈n· n+1〉
When the result of a function does not depend on its variable, we write just the domain and result
with an arrow between. For example, the constant function

〈n: nat· 1〉
can be written more briefly as

nat→1
Finally, if the result does not depend on the variable and the domain is known or irrelevant, we
can omit the domain. For example, if the domain is known to be nat , the preceding constant
function can be written

→1

The result of a function can be a function, for example
〈d: nat+1· 〈n: nat· n: d×nat〉〉

This can be called a function of two variables, saying whether its first operand divides its second.
Here is a function of two variables in which the first variable is used in the domain of the second.

〈n: nat· 〈m: 0,..n· m×n + n〉〉
The constant function of two natural variables

〈n: nat· 〈m: nat· 0〉〉
can be abbreviated

nat → nat → 0
or, if we know the domains from the surrounding commentary,

→→0 

Unified Algebra 22

A function introduces a variable that is local to the function. Those variables that appear in the
function, and are not introduced by the function, are nonlocal to the function. For example, in

〈x: nat· x+y〉
variable x is local, and variable y is nonlocal. Any expression may be a part of a larger
expression, and so a variable that is nonlocal to a function may be local in a larger enclosing
function, or in a smaller enclosed function. Similarly, a variable that is local to a function may
be nonlocal in a larger enclosing function, or in a smaller enclosed function.

The formal way to introduce a variable into an expression is the function, and the formal way to
eliminate a variable is function application; in other words, function application expresses
instantiation. Function f is applied to (operates on) an element x of its domain by the notation
f x , pronounced “ f applied to x ” or “ f of x ”. Parentheses may be used around any
expression, so we may write f (x) . Parentheses must be used when required by the evaluation
order; for example, f (x+1) . But we cannot write fx without a space between f and x
because that would be a single multicharacter name. Since 3 is an element of nat ,

〈x: nat· x+y〉 3
is a function application, and it expresses (has the same value as) the instantiation that replaces x
in x+y with 3 .

〈x: nat· x+y〉 3 = 3+y

Here is another example.
〈d: nat+1· 〈n: nat· n: d×nat〉〉 3 5 apply, since 3: nat+1

= 〈n: nat· n: 3×nat〉 5 apply, since 5: nat
= 5: 3×nat
= ⊥

Here is a function that can be applied to a variable number of operands.
eat = 〈n: nat· n=0 ⊨ 0 ⫤ eat〉

The function eat eats operands until it is fed 0 , whereupon its result is 0 . So eat 3 = eat and
eat 3 5 = eat and eat 3 5 0 = 0 .

Here is the Application Law. If x is an element of D , then
〈x: D· R〉 x = R

Here is an instance of this law, replacing D with nat and R with x+y .
〈x: nat· x+y〉 x = x+y

Instantiation was introduced near the beginning of this paper, and there were two points
explaining how it works; now there are two more.
• Except when instantiating the Application Law, instantiation replaces nonlocal variables only.

If we instantiate 〈x: nat· x+y〉 x by replacing x with y we obtain 〈x: nat· x+y〉 y .
• Except when instantiating the Application Law, instantiation must not place a nonlocal

variable where it will appear to be local. We cannot instantiate 〈x: nat· x+y〉 x by replacing
y with x.

The exceptions are due to the fact that the Application Law expresses instantiation.

The Application Law requires that the operand is an element of the domain. So we cannot
simplify 〈x: 0, 1· x+1〉 2 . Nonetheless, 〈x: 0, 1· x+1〉 2 = 〈x: 0, 1· x+1〉 2 simplifies to ⊤ .

The domain of a function (domain of its variable) is obtained by the ☐ operator with the
Domain Law:

☐〈x: D· R x〉 = D

Unified Algebra23

When we instantiate the Domain Law, the instantiation rules prevent us from replacing D with
an expression in which variable x is nonlocal.

The Extension Law says:
〈x: ☐f· f x〉 = f

This law can be instantiated by replacing f with 〈y: D· f y〉 to obtain
〈x: ☐〈y: D· f y〉· 〈y: D· f y〉 x〉 = 〈y: D· f y〉

We use the Domain Law, and if x is an element in D then we can apply the middle 〈y: D· f y〉 to
x to obtain

〈x: D· f x〉 = 〈y: D· f y〉
which says that a function in variable x equals a function in variable y obtained by replacing x
with y in the result expression. This is called “renaming the variable”. Sometimes renaming is
required to allow an instantiation without making a nonlocal variable appear local.

The size of a function is the size of its domain.
#f = ¢☐f

A function can be conditional, and so can its operand.
(b ⊨ f ⫤ g) x = (b ⊨ f x ⫤ g x)
f (b ⊨ x ⫤ y) = (b ⊨ f x ⫤ f y)

A function can be a bunch union, and so can its operand. Function application is extended to
non-element operands by base and distribution laws.

null x = null
(f, g) x = f x, g x
f null = null
f (x, y) = f x, f y

The range of function f is f (☐f) . So f (☐f): int says that f is a function whose result is an
integer. And f: ☐f → int says the same thing.

Although the Function Application Law requires the operand to be an element, if a function uses
its variable exactly once, and in a distributing context, then the function can be applied to a non-
elementary operand because the result will be the same as would be obtained by distribution.

Operators on Functions

The operators ∧ ∨ + × have been defined for two number operands. Following Curry, we now
define them for one function operand. ∧f is the minimum of f . ∨f is the maximum of f . +f is
the sum of f . ×f is the product of f . At the same time we define a new operator § on one
function operand: §f (“solution(s) of f ”, or “those f ”, or “that f ”) is the values in the domain
of f such that the corresponding result is ⊤ . Here are the laws, in which e is an element, A
and B are anything, and f and g are functions.

∧〈x: null· f x〉 = ⊤ = ∧(A→⊤)
∧〈x: e· f x〉 = f e
∧〈x: A, B· f x〉 = ∧〈x: A· f x〉 ∧ ∧〈x: B· f x〉
(∧(A→e) = e) ≥ (A⧧null)
∧〈x: A· x: B〉 = (A: B)
∧〈x: §f· g x〉 = ∧〈x: ☐f· f x ⊨ g x ⫤ ⊤〉
∧〈x: ☐f· (x:§f) = f x〉
∧〈x: §f· f x〉

Unified Algebra 24

∨〈x: null· f x〉 = ⊥ = ∨(A→⊥)
∨〈x: e· f x〉 = f e
∨〈x: A, B· f x〉 = ∨〈x: A· f x〉 ∨ ∨〈x: B· f x〉
∨〈x: §f· g x〉 = ∨〈x: ☐f· f x ⊨ g x ⫤ ⊥〉
(∨(A→e) = e) ≥ (A⧧null)
∨〈x: A· x: B〉 = (A‘B ⧧ null)

+〈x: null· f x〉 = 0 = +(A→0)
+〈x: e· f x〉 = f e
+〈x: A, B· f x〉 + +〈x: A‘B· f x〉 = +〈x: A· f x〉 + +〈x: B· f x〉
+〈x: §f· g x〉 = +〈x: ☐f· f x ⊨ g x ⫤ 0〉

×〈x: null· f x〉 = 1 = ×(A→1)
×〈x: e· f x〉 = f e
×〈x: A, B· f x〉 × ×〈x: A‘B· f x〉 = ×〈x: A· f x〉 × ×〈x: B· f x〉
×〈x: §f· g x〉 = ×〈x: ☐f· f x ⊨ g x ⫤ 1〉

§〈x: null· f x〉 = null = §(A→⊥)
§〈x: e· f x〉 = (f e ⊨ e ⫤ null)
§〈x: A, B· f x〉 = §〈x: A· f x〉 , §〈x: B· f x〉
§〈x: §f· g x〉 = §〈x: ☐f· f x ⊨ g x ⫤ ⊥〉
§(A→⊤) = A
§〈x: A‘B· f x〉 = §〈x: A· f x〉 ‘ §〈x: B· f x〉
§〈x: A· f x〉 , §〈x: A· g x〉 = §〈x: A· f x ∨ g x〉
§〈x: A· f x〉 ‘ §〈x: A· g x〉 = §〈x: A· f x ∧ g x〉
§(A→e) = (e ⊨ A ⫤ null)
§〈x: A· x: B〉 = (A‘B)
(x:§f) = (x: ☐f) ∧ f x

We distribute application of function f over solutions as follows:
f (§g) = §〈y: f (☐g)· ∨〈x: ☐g· (f x = y) ∧ g x〉〉

Let f be a function with a non-null domain. Let g be any function. If g x varies directly with
x , then

∧〈x: ☐f· g (f x)〉 ≥ g(∧〈x: ☐f· f x〉) = g (∧f)
∨〈x: ☐f· g (f x)〉 ≤ g(∨〈x: ☐f· f x〉) = g (∨f)

If g x varies inversely with x , then
∧〈x: ☐f· g (f x)〉 ≥ g(∨〈x: ☐f· f x〉) = g (∨f)
∨〈x: ☐f· g (f x)〉 ≤ g(∧〈x: ☐f· f x〉) = g (∧f)

And in most instances, ≥ and ≤ can be replaced by = . Here are the distributive or factoring
laws (omitting the non-null domain).

∧〈x· –f x〉 = –∨〈x· f x〉 = –∨f
∧〈x· f x + y〉 = ∧〈x· f x〉 + y = ∧f + y
∧〈x· f x – y〉 = ∧〈x· f x〉 – y = ∧f – y
∧〈x· y – f x〉 = y – ∨〈x· f x〉 = y – ∨f
∧〈x· f x ∧ y〉 = ∧〈x· f x〉 ∧ y = ∧f ∧ y
∧〈x· f x ∨ y〉 = ∧〈x· f x〉 ∨ y = ∧f ∨ y
∧〈x· f x ⩟ y〉 = ∨〈x· f x〉 ⩟ y = ∨f ⩟ y

Unified Algebra25

∧〈x· f x ⊽ y〉 = ∨〈x· f x〉 ⊽ y = ∨f ⊽ y
∧〈x· f x < y〉 ≥ (∨〈x· f x〉 < y) = (∨f < y)
∧〈x· f x > y〉 ≥ (∧〈x· f x〉 > y) = (∧f > y)
∧〈x· f x ≤ y〉 = (∨〈x· f x〉 ≤ y) = (∨f ≤ y)
∧〈x· f x ≥ y〉 = (∧〈x· f x〉 ≥ y) = (∧f ≥ y)
∧〈x· y ⊨ f x ⫤ z〉 = (y ⊨ ∧〈x· f x〉 ⫤ z) = (y ⊨ ∧f ⫤ z)
∨〈x· – f x〉 = –∧〈x· f x〉 = –∧f
∨〈x· f x + y〉 = ∨〈x· f x〉 + y = ∨f + y
∨〈x· f x – y〉 = ∨〈x· f x〉 – y = ∨f – y
∨〈x· y – f x〉 = y – ∧〈x· f x〉 = y – ∧f
∨〈x· f x ∧ y〉 = ∨〈x· f x〉 ∧ y = ∨f ∧ y
∨〈x· f x ∨ y〉 = ∨〈x· f x〉 ∨ y = ∨f ∨ y
∨〈x· f x ⩟ y〉 = ∧〈x· f x〉 ⩟ y = ∧f ⩟ y
∨〈x· f x ⊽ y〉 = ∧〈x· f x〉 ⊽ y = ∧f ⊽ y
∨〈x· f x < y〉 = (∧〈x· f x〉 < y) = (∧f < y)
∨〈x· f x > y〉 = (∨〈x· f x〉 > y) = (∨f > y)
∨〈x· f x ≤ y〉 ≤ (∧〈x· f x〉 ≤ y) = (∧f ≤ y)
∨〈x· f x ≥ y〉 ≤ (∨〈x· f x〉 ≥ y) = (∨f ≥ y)
∨〈x· y ⊨ f x ⫤ z〉 = (y ⊨ ∨〈x· f x〉 ⫤ z) = (y ⊨ ∨f ⫤ z)

Function Inclusion

Consider a function in which the result is a bunch: each element of the domain is mapped to
zero or more elements. For example,

〈n: nat· n, n+1〉
maps each natural number to two natural numbers. Application works as usual:

〈n: nat· n, n+1〉 3 = 3, 4

Functions are sometimes classified as partial or total, and sometimes as deterministic or
nondeterministic, and sometimes as underdetermined or determined or overdetermined.

partial sometimes produces no result
total always produces at least one result
deterministic always produces at most one result
nondeterministic sometimes produces more than one result
underdetermined sometimes produces more than one result
determined always produces exactly one result
overdetermined sometimes produces no result

Here is a function that is partial, nondeterministic, underdetermined, and overdetermined.
〈n: nat· 0,..n〉

This terminology is overlapping and confusing and unnecessary, and we won't use any of it.

The union of functions is a function, and the intersection of functions is a function, defined by
the following four laws.

(f, g) x = f x, g x ☐(f, g) = ☐f ‘ ☐g
(f ‘ g) x = f x ‘ g x ☐(f ‘ g) = ☐f, ☐g

A function f is included in a function g according to the Function Inclusion Law:
(f: g) = (☐g: ☐f) ∧ ∧〈x: ☐g· f x: g x〉

Using it both ways round, we find function equality is as follows:

Unified Algebra 26

(f = g) = (☐f = ☐g) ∧ ∧〈x: ☐f· f x = g x〉

Let suc be the successor function on the naturals.
suc = 〈n: nat· n+1〉

We now evaluate suc: nat→nat . Function nat→nat is an abbreviation of 〈n: nat· nat〉 , which
has an unused variable. It is a function whose result, for each element of its domain nat , is the
bunch nat .

(suc: nat→nat) use Function Inclusion Law
= (nat: nat) ∧ ∧〈n: nat· suc n: nat〉
= ∧〈n: nat· n+1: nat〉
= ⊤

And, more generally,
(f: A→B) = (A: ☐f) ∧ (f A: B)

We can similarly show
〈d: nat+1· 〈n: nat· n: d×nat〉〉: (nat+1)→nat→bin

The function eat defined earlier with a variable number of operands satisfies
eat: nat → (0, eat)

The use of bunches unified our treatment of numbers and number types; it similarly unifies our
treatment of functions and function types.

Let check be a function whose variable is a function.
check = 〈f: (0,..10)→int· ∧〈n: 0,..10· even (f n)〉〉
even = 〈i: int· i: 2×int〉

Function check checks whether a function, when applied to the first 10 natural numbers,
produces only even integers. Since its variable f is used exactly once in check , and in a
distributing context (even distributes over bunch union), we can apply check to a functional
operand (even though functions are not elements). An operand for check must be a function
whose domain includes 0,..10 because check will be applying its operand to all elements in
0,..10 . An operand for check must be a function whose results, when applied to the first 10
natural numbers, are included in int because even will be applied to them. An operand for
check may have a larger domain (extra domain elements will be ignored), and it may have a
smaller range. If A: B and f: B→C and C: D then f: A→D . Therefore

suc: (0,..10)→int
We can apply check to suc and the result will be ⊥ .

Function Composition

Let f and g be functions such that –(f: ☐g) (f is not in the domain of g). Then g f is the
composition of f and g , defined by the Composition Laws

☐(g f) = §〈x: ☐f· f x: ☐g〉
(g f) x = g (f x)

Because composition is associative,
f (g h) = (f g) h

we don't need the parentheses.

The Composition Laws let us write complicated combinations of functions and operands without
parentheses. They sort themselves out properly according to their domains. For example,
suppose f and g are functions of one variable, and h is a function of two variables. Suppose
further that –(f: ☐h) (f is not in the domain of h), and –(g: ☐(h (f x))) (g is not in the

Unified Algebra27

domain of h (f x)). Then
h f x g y adjacency is left-to-right

= (((h f) x) g) y use function composition on h f since –(f: ☐h)
= ((h (f x)) g) y use function composition on (h (f x)) g since –(g: ☐(h (f x)))
= (h (f x)) (g y) drop superfluous parentheses
= h (f x) (g y)

Operator-Function Composition

If x: D , then application yields
〈y: D· –y〉 x = –x

so in the context of application, the function 〈y: D· –y〉 is identical to the operator – on domain
D . We take them to be identical also in the context of composition. If –(f: D) , then

(–f) x
= (〈y: D· –y〉 f) x
= 〈y: D· –y〉 (f x)
= –(f x)

The – operator is being composed with a function. We can similarly compose any operator with
a function if the operator does not operate on the function but on its result. For examples, if h is
a function whose result is a function whose result is a number, then

(+h) x = +(h x)
+〈x· h x〉 = 〈x· +(h x)〉

This enables us to write some distributive/factoring laws neatly; for example,
∧–f = –∨f

Since the operator # does apply to a function, it cannot be composed with a function.

Two-operand operators that do not operate on functions but on their results can similarly be
composed with the functions. For examples, if f and g are functions with the same domain
whose results are numbers,

(f × g) x = f x × g x
〈x· f x〉 × 〈x· g x〉 = 〈x· f x × g x〉

So the inner product of f and g is +(f×g) . This enables us to write some distributive/factoring
laws neatly; for example,

∧(f≤g) = (∨f ≤ ∧g)
Since the two-operand operators = and : do operate on functions, they cannot be composed
with functions. (Operator-function composition has been called “lifting”.)

(aside) The following alternative to operator-function composition was considered and rejected.
It would be more uniform to say that all operators compose with functions, so that

(f × g) x = (f x × g x)
(f = g) x = (f x = g x)
(f : g) x = (f x : g x)

and then, for functions f and g having the same domain
+(f×g) = +〈x· f x × g x〉 inner product
∧(f=g) = ∧〈x· f x = g x〉 function equality
∧(f:g) = ∧〈x· f x: g x〉 function inclusion

But function equality and function inclusion are wanted so frequently that writing ∧(f=g) and
∧(f:g) instead of f=g and f:g is too great a price. And we would have no notation for functions
that introduce function-valued variables. (end of aside) 

Unified Algebra 28

Selective Union

If f and g are functions, then
f | g “ f otherwise g ”

is a function that behaves like f when applied to an operand in the domain of f , and otherwise
behaves like g . The laws are:

☐(f | g) = ☐f, ☐g
(f | g) x = (x: ☐f ⊨ f x ⫤ g x)

Selective union is idempotent, associative, and composition distributes over it.
f | f = f
f | (g | h) = (f | g) | h
(g | h) f = g f | h f

Selective union gives us a way to express a function by listing domain-result pairs as in the
following example:

0 → 2 | 2 → 1 | 1 → 0
This function maps 0 to 2 , 2 to 1 , and 1 to 0 .

Lists are Functions
A list is a special case of function.

L = 〈n: ☐L· L n〉
List indexing is function application. List inclusion is function inclusion, and that is why a list
includes its extensions. List equality is function equality.

(L: M) = (#L ≥ #M) ∧ ∧〈n: ☐M· L n: M n〉
(L=M) = (#L = #M) ∧ ∧〈n: ☐M· L n = M n〉

Lists can be operands in a selective union. With function 1→21 as left operand, and list
[10; 11; 12] as right operand, we get

1→21 | [10; 11; 12] = [10; 21; 12]
just as we defined it for lists. Operators that apply to functions can be applied to lists.

+L = +〈n: ☐L· L n〉
conveniently expresses the sum of the items of the list.

The join operator L;;M applies to lists, but not to functions in general. List order L≤M applies
to lists whose items are ordered, but not to lists in general, and not to functions in general.

Limits
We introduce three operators, ∨∧ (“limit inferior”), ∧∨ (“limit superior”), and ◊ (“limit”) that
apply to functions with domain nat (infinite lists). In this section, all domains are nat . Here
are their laws.

∨∧f = ∨〈m· ∧〈n· f (m+n)〉〉 Limit Inferior Law
∧∨f = ∧〈m· ∨〈n· f (m+n)〉〉 Limit Superior Law
∨∧f ≤ ◊f ≤ ∧∨f Limit Law

(We intentionally avoid all mention of “existence” of limits. If f happens to be a binary
function, then ∨∧f is traditionally called “eventually always f ”, and ∧∨f is traditionally called
“infinitely often f ”.)

For some functions f , the Limit Law tells us ◊f exactly. For examples,
◊〈n· n〉 = ⊤

Unified Algebra29

◊〈n· 1/(n+1)〉 = 0
For some functions, the Limit Law tells us a little less. For example,

–1 ≤ ◊〈n· (–1)n〉 ≤ 1
In general,

∧f ≤ ∨∧f ≤ ◊f ≤ ∧∨f ≤ ∨f
For nondecreasing f ,

∧f ≤ ∨∧f = ◊f = ∧∨f = ∨f
For nonincreasing f ,

∧f = ∨∧f = ◊f = ∧∨f ≤ ∨f

Now that we have defined ◊ , we can define the real numbers as follows:
(r: real) = ∨〈f: nat→rat· r = ◊f〉

or maybe more briefly as
real = ◊(nat→rat)

Notice that nat→rat includes all functions with domain at least nat and result at most rat , and
we take the limits of all such functions. (This definition includes ⊤ and ⊥ in real . If we
have any need of finite reals, we can define them as freal = real⨩bin .)

We defined integer intervals m,..n earlier, and now we define a similar notation for real
intervals. If x≤y , then

x,_y “ x to y ”
is the reals from (including) x to (excluding) y .

(w: x,_y) = (w: real) ∧ (x≤w<y)
Now we can define an integral as an operator on a function. What is traditionally written

∫ f(x) dx
should be written something like

+〈x: a,_b· f x × ⦶x〉
The benefit is that all the laws of functions apply. For example, we do not need a new law to
rename the variable.

Conclusion
I have presented an algebra that unifies numbers with binary values, types with values, lists with
functions, and function spaces with functions. There is no loss of structure, just loss of
duplication. This is mathematics by design. Like any design, it is neither right nor wrong; the
criteria for judging it are usefulness and elegance.

When we apply a formalism to describe and reason about some phenomena, we may find that it
works quite well for a certain range of observations, but less well outside that range. In this
formalism, when D represents a finite class of objects and B x is a binary expression, we find
that ∨〈x: D· B x〉 is quite useful for saying “There exists an object, let's call it x , in the bunch of
objects represented by D , such that B is true of x .”. But when D represents an infinite bunch
of objects, ∨〈x: D· B x〉 differs slightly from the traditional mathematical idea of existence. One
way to resolve the discrepancy is to redesign the algebra, sacrificing simplicity and elegance, to
attempt to fit the traditional mathematical idea of existence more closely. Or we could part from
the traditional mathematical idea of existence, or even abolish the idea of mathematical existence
altogether. I prefer abolishment.

a
b

Unified Algebra 30

Acknowledgements
I thank Rutger Dijkstra, Wim Hesselink, Jim Grundy, David Barton, Albert Lai, and Josh Jordan
for catching some errors. Remaining errors are, of course, for the purpose of testing the reader. I
thank Dimitrie Paun and Albert Lai for discussion.

References and Sources
[0] E.C.R.Hehner: “from Boolean Algebra to Unified Algebra”, the Mathematical

Intelligencer, Springer, 26(2) 3-19, 2004, and hehner.ca/BAUA.pdf

[1] E.C.R.Hehner: a Practical Theory of Programming, Springer 1993, current edition
available free at hehner.ca/aPToP

Appendix A added 2018-12-13

An objection has been made to the unified algebra presented in this paper: this algebra
introduces a single infinite value ⊤ , not the wealth of infinite values that mathematicians know
and love. I have three replies.

First, an algebra is designed for a purpose: to be helpful in applications. By “application” I
mean some subject outside mathematics. By “helpful” I mean it gives us a modeling language
and a means of calculation. I do not know of any application (outside mathematics!) that has
more than one infinite value, so I am not motivated to add more infinities.

Second, I do not suggest that this algebra should be our only algebra. It can also be part of a
larger algebra. More infinities can be created and added, if one so desires.

Last, the unified algebra presented in this paper does include many infinities, and infinitesimals
too. They are not there because I intentionally added them, but rather, they are there as a
consequence of operators and structures that are useful in applications. First, there is a perimeter
of infinite values around the complex plane. Second, let x be real, and let p be positive real.
Then 0 < 0;x < p . Hence 0;x is an infinitesimal, larger than 0 but smaller than any positive
real. And 0 < 0;0;x < 0;p < p , so 0;0;x is an infinitesimal smaller than 0;p . And so on.
Similarly ⊤ < ⊤;0 < ⊤;⊤ < ⊤;⊤;0 < ⊤;⊤;⊤ and so on. Finally, more infinitesimals and
infinities can be created by using sets and lists, and they can be related to the infinities we
already have by strengthening the laws A ⧧ {A} and S ⧧ [S] to A < {A} and S < [S] .

Appendix B added 2021-10-22

I have tried to design a beautiful, simple, consistent, and useful algebra. If an inconsistency is
discovered, that does not mean that the algebra should be thrown away. It does mean that the
algebra has to be fixed. It is fixed by weakening some law used in the proof of inconsistency, so
the proof can no longer be made. Designing an algebra is like approaching a cliff edge. To get
the best view, you want to approach as closely as possible; similarly, to be able to prove as much
as possible, you want to make the laws as strong as possible. But if you make the laws too
strong, you fall over the cliff, and can prove everything trivially, making the algebra useless. So
you have to recover by taking a step back. The design process is a repetition of daring to take a
step forward, and if you fall, taking a step back. 

http://www.cs.utoronto.ca/~hehner/BAUA.pdf
http://www.cs.utoronto.ca/~hehner/aPToP

Unified Algebra31

If you design two algebras with all different symbols from each other, there is no danger of
inconsistency between them. But their laws and solutions must be learned separately. A result
proven in one algebra is of no benefit in the other algebra. To reduce the burden of learning and
increase the benefit of proving, I have unified whatever is similar in structure between the
algebras. But unifying algebras is particularly prone to falling over the cliff. If I have fallen,
please do not walk away; please point out the inconsistency so that I can fix it.

Here is an inconsistency I discovered.
2 = 21 = 22 × 1/2 = (22)1/2 = 41/2 = ((–2)2)1/2 = (–2)2 × 1/2 = (–2)1 = –2

Of course 4 has two square roots, but the transitivity of equality compels us to say 2 = –2 . I
decided that the law

xy×z = (xy)z

should be weakened. Two possibilities are
(z: int) ≤ (xy×z = (xy)z)
xy×z : (xy)z

I chose the latter. So now
2 = 21 = 22 × 1/2 : (22)1/2 = 41/2 = ((–2)2)1/2 :: (–2)2 × 1/2 = (–2)1 = –2

because the square root of 4 is a bunch of two numbers.
41/2 = 2, –2

This bunch still obeys the usual law of exponents.
(41/2)2 = (2, –2)2 = 22, (–2)2 = 4, 4 = 4

The design of an algebra, like the design of all mathematics, is not a search for the truth; there is
no truth in mathematics. It is a search for usefulness in applications outside mathematics. And
that requires experimentation and judgement.

