
Theories, Implementations,
and Transformations

Eric Hehner, Ioannis T. Kassios

Department of Computer Science, University of Toronto,

Toronto ON M5S 3G4 Canada

{hehner, ykass}@cs.utoronto.ca

Abstract. The purpose of this paper is to try to put theory presentation

and structuring in the simplest possible logical setting in order to improve

our understanding of it. We look at how theories can be combined, and

compared for strength. We look at theory refinement and implementation,

and what constitutes proof of correctness. Our examples come from both

the functional style and imperative (state-changing) style of theory.

Finally, we explore how one implementation can be transformed to

another.

0 Introduction

A classic paper by Burstall and Goguen in 1977 [2] taught us to think about data

types used in computer programs as logical theories, presented by axioms, whose

properties can be explored by logical deduction. The following year, a paper by

Guttag and Horning [4] developed the idea further, showing us the algebraic properties

of data types presented as theories. Another important contribution came from Abrial

[8] in the design of Z, and more recently B [1]. He brought to theory design all the

structuring and scoping that programming languages provide, enabling us to build

large theories by composing smaller ones. With the work of the Z and B

community, and a change of terminology, theory design became an important part of

software development.

The purpose of this paper is to try to put theory presentation and structuring in

the simplest possible logical setting in order to improve our understanding of it. It is

not the purpose of this paper to provide a notation or language for practical

engineering use; for that task the Z and B community are the leaders.

1 Notation

Notation is not the point of this paper; as much as possible, we will use standard, or

at least familiar, notations. The two booleans are † and ƒ , and the boolean

operators are ¬ ∧ ∨ = + ⇒ ⇐ . The same equality = and unequality + will be

used with any type. We also use a large version = ⇒ ⇐ of equality and

implication that are identical to the small version except for their precedence; the

only purpose is to save a clutter of parentheses. The empty bunch is null . The

comma (,) is bunch union, which is commutative, idempotent, and associative. The

colon (:) is bunch inclusion. For example,

2, 9 : 0, 2, 5, 9

is a boolean expression with value † because the left operand of colon is included

in the right operand. We use the asymmetric notation x,..y for the bunch of

integers from and including x up to but excluding y . The empty list is [nil] , and

the list [2; 6; 4; 8] contains four items. The notation [x;..y] is used for the list of

integers from and including x up to but excluding y . Lists are indexed from 0 .

List formation distributes over bunch union, so if nat is the natural numbers, then

[nat] is the list whose one item is the bunch of natural numbers, or equally, the

bunch of all lists whose one item is a natural number. A star denotes repetition of an

item, so [*nat] is all lists of natural numbers. We use # for list length. We use a

standard lambda notation λx: D· fx for functions, and juxtaposition for function

application. We use A→B for the bunch of all functions with domain at least A

and range at most B . Quantifiers ∀ ∃ apply to functions, but for the sake of

familiarity they replace the lambda.

Here are all the notations of the paper in a precedence table.

0. † ƒ () [] numbers names (true, false, precedence, list brackets)

1. juxtaposition (function application) left-to-right

2. # * → (list length, item repetition, function space) right-to-left

3. + – + (addition, subtraction, catenation) left-to-right

4. ; ;.. (sequencing of list items) associative

5. , ,.. | (bunch union, function selection) associative

6. = + < > ≤ ≥ : (equality, unequality, order, inclusion) continuing

7. ¬ (negation) right-to-left

8. ∧ (conjunction) associative

2 Eric Hehner, Ioannis T. Kassios

9. ∨ (disjunction) associative

10. ⇒ ⇐ (implication) continuing

11. := (assignment)

12. if then else (if then else)

13. ; (sequential composition) associative

14. λ· ∀ · ∃· (function, quantifiers)

15. = ⇒ ⇐ (equality, implication) continuing

To say that = is continuing is to say that a = b = c neither associates to the left

nor associates to the right, but means a = b ∧ b = c . A mixture of continuing

operators can be used; for example, a ≤ b < c means a ≤ b ∧ b < c . For further

details on notation and basic theories please consult [5] or [6].

2 Theories

Here is a little theory presented in a style similar to [2] and [4].

Theory0: names: chain, start, link, isStart

signatures: start: chain

link: chain→chain

isStart: chain→bool

axioms: isStart start

∀c: chain· ¬ isStart (link c)

Theory0 introduces four new names into our vocabulary. The signatures section tells

us something about the role these names will play in the theory. Then the axioms

tell us what can be proven, what are the theorems, in this theory.

The first problem with this presentation of Theory0 is that names cannot be

attached to theories. For example, this theory uses the name bool , and many others

do too, and each of them is telling us something about bool . And when we build

large theories by composing smaller ones, no particular theory in the composition

can claim a name as its own. And it isn't just names that get introduced by theories;

symbols like ≤ , or in our example ∀ and ¬ , and even = , are used in many

theories, and each of them is telling us something more about the use of those

symbols. Names and symbols are defined by their use in all theories where they

appear; and we can always add more theories to the collection. As part of a library of

Theories, Implementations, and Transformations 3

theories, we need a linked, browsable dictionary of names and symbols, telling us

which theories use them. This dictionary should be generated automatically from the

library of theories, so that it is always up-to-date. The first change to theory

presentation is to remove the list of names.

The next change to theory presentation is to consider a signature to be a kind of

boolean expression. One of the uses of Bunch Theory is as a fine-grained type

theory. The boolean expression

5: 0, 3, 5, 8

has value † and says, “ 5 is included among 0, 3, 5, 8 ”. But we can also read it

as “ 5 has type 0, 3, 5, 8 ”. Defining nat as the bunch of all natural numbers, the

boolean expression 5: nat has value † . And so x: nat can be given as an axiom

about x . So too x , y: nat can be an axiom, just as 3, 5: 0, 3, 5, 8 has value

† . The expression A→B consists of all functions with domain at least A and

range at most B . For example,

(λn: nat· n+1) : nat→nat

has value † . And so f: nat→nat can be an axiom about f . By “currying”,

A→B→C consists of two-variable functions, and so on.

The final change to theory presentation is just to write all the axioms as one big

axiom by taking their conjunction. Now a theory consists of one single axiom, so

there is now no difference between a theory and an axiom. Theory0 can be written as

follows.

Theory0 = start: chain

∧ link: chain→chain

∧ isStart: chain→bool

∧ isStart start

∧ ∀c: chain· ¬ isStart (link c)

3 Composition

The original paper by Burstall and Goguen [2] presents four operations on theories:

combination, enrichment, induction, and derivation. To illustrate theory

4 Eric Hehner, Ioannis T. Kassios

combination, here is a second theory.

Theory1 = start: chain

∧ link: chain→chain

∧ (∀c: chain· start + link c)

∧ (∀c, d: chain· (c=d) = (link c = link d))

Theory0 and Theory1 have much in common, but also some differences; there are

theorems in each that are not theorems in the other. With our form of theory

presentation, we can combine the two theories with ordinary boolean conjunction.

Theory2 = Theory0 ∧ Theory1

Burstall and Goguen's next theory operation, enrichment, is also just conjunction,

but with further axioms rather than with a named theory. Here is an example.

Theory3 = Theory2

∧ ∀c: chain· start ≤ c < link c

The next of Burstall and Goguen's theory operations adds a structural induction

scheme over the generators of the new data type. For us, it is again just conjunction

of another axiom.

Theory4 = Theory3

∧ ∀P: (chain→bool)·

P start ∧ (∀c: chain· P c ⇒ P (link c))

⇒ ∀c: chain· P c

That is the familiar form of induction; a neater, equivalent form is as follows.

Theory4 = Theory3

∧ ∀C· start, link C: C ⇒ chain: C

To briefly explain this axiom, most operators and functions distribute over bunch

union. For example,

(2, 5, 9) + 1 = (3, 6, 10)

Theories, Implementations, and Transformations 5

So link C consists of all the results of applying link to things in C . The axiom
says that if start and all the links of things in C are included in C , then chain is
included in C . The antecedent can be rewritten as

start: C ∧ link: C→C

and, regarding C as the unknown, chain is one solution. The axiom therefore says
that chain is the smallest solution.

Burstall and Goguen's final operation on theories, derivation, allows part of a
theory to be hidden from the theory users. For us, that's existential quantification.

Theory5 = ∃start: chain· Theory4

Theory5 has all the same theorems as Theory4 minus those that mention start . If
we want to keep all the theorems of Theory4 but rename start as new , define

Theory6 = ∃start: chain· start=new ∧ Theory4

We can combine theories with other boolean operators too, such as disjunction and
implication. For example,

Theory7 = (∀c: chain· new ≤ c) ⇒ Theory6

This makes Theory7 such that if we had the axiom ∀c: chain· new ≤ c then we
would have Theory6 . In a vague sense, Theory7 is Theory6 without
∀c: chain· new ≤ c . To be precise, if we take Theory7 and add the axiom
∀c: chain· new ≤ c , we get back Theory6 .

Theory7 ∧ ∀c: chain· new ≤ c = Theory6 ∧ ∀c: chain· new ≤ c

New theories are not always built by additions to old theories; sometimes they are
built by deletions. One of the problems with object-orientation is that, although
subclassing allows us to add attributes, there is no way to delete attributes and make a
superclass, nor to make an interclass between two existing classes.

These examples illustrate that our theory presentation is both a simplification
and a generalization of the early work. By reducing theories to boolean expressions
we understand them in the simplest possible way, and we allow all combinations that
make logical sense.

6 Eric Hehner, Ioannis T. Kassios

4 Refinement and Implementation

A theory can serve as a specification of a data type, and of computation in general.

Specifications can be refined, usually by resolving nondeterminism. Specification A

refines specification B if all computer behavior satisfying A also satisfies B . If

theories are expressed as single boolean expressions,

theory A refines theory B means A⇒B

theory B is refined by theory A means B⇐A

Refinement is just implication. So far, we have

Theory6 ⇒ Theory7

Theory4 ⇒ Theory5

Theory4 ⇒ Theory3

Theory3 ⇒ Theory2

Theory2 ⇒ Theory1

Theory2 ⇒ Theory0

When we define a theory, and especially when we combine theories, there is always

the danger of inconsistency. The only way to prove the consistency of a theory is to

implement it. As software engineers, our goal is to design useful theories (they

must be consistent to be useful), and to implement them. A theory is said to be

implemented when all names and symbols appearing in it have been implemented. A

name or symbol is implemented by defining it in terms of other names and symbols

that are implemented. Ultimately, the computing machinery provides the ground

theory on top of which all other theories are implemented. (To logicians, an

implementation is known as a “model”, and the ultimate machinery is usually taken

to be set theory, although they might claim that the model is the sets themselves and

not set theory.)

An implementation can be expressed in exactly the same form as a theory: a

boolean expression. Here is an example implementation of Theory4 , assuming that

nat is an implemented data type, and that functions are implemented.

Imp = chain = nat

∧ start = 0

∧ isStart = (λc: nat· c=0)

∧ link = (λc: nat· c+1)

Theories, Implementations, and Transformations 7

An implementation is also a theory, but of a particular form. It is a conjunction of

equations, and each equation has a left side consisting of one of the names needing an

implementation, and a right side employing only names and symbols that are already

implemented.

The benefit in expressing an implementation in the same form as a theory is that

the proof of correctness of the implementation is now just a boolean implication.

We prove that Imp correctly implements Theory4 by proving

Imp ⇒ Theory4

Implementation is just refinement by an implemented theory. By the transitivity of

implication we have immediately that Imp also implements Theory5 , Theory3 ,

Theory2 , Theory1 , and Theory0 .

5 Functional Stack

From a typical mathematician's viewpoint, a stronger theory is a better theory

because it allows us to prove more. But the theory must not be so strong as to be

inconsistent, for then we can prove everything trivially. The game is to add axioms,

approaching the brink of inconsistency as closely as possible without falling over.

For example, here a strong but consistent theory of stacks.

Stack0 = λX· empty: stack

∧ push: stack→X→stack

∧ pop: stack→stack

∧ top: stack→X

∧ (∀S· empty, push S X: S ⇒ stack: S)

∧ (∀s: stack· ∀x: X· push s x + empty)

∧ (∀s, t: stack· ∀x, y: X·

 push s x = push t y = s=t ∧ x=y)

∧ (∀s: stack· ∀x: X· pop (push s x) = s)

∧ (∀s: stack· ∀x: X· top (push s x) = x)

And here is an implementation, assuming lists, functions, and integers are already

implemented.

8 Eric Hehner, Ioannis T. Kassios

Stack1 = stack = [*int]

∧ empty = [nil]

∧ push = (λs: stack· λx: int· s+[x])

∧ pop = (λs: stack· if s=empty then empty else s [0;..#s–1])

∧ top = (λs: stack· if s=empty then 0 else s (#s–1))

where [*int] is all lists of integers, [nil] is the empty list, + is catenation, # is

length, and s [0;..#s–1] is list s up to but not including its last item. To prove

that Stack1 is an implementation of Stack0 we must prove

Stack1 ⇒ Stack0 int

but we won't spend the space here.

The only way to prove the consistency of a theory is to implement it. The only

way to prove the incompleteness of a theory is to implement it twice such that some

boolean expression is a theorem of one implementation, and its negation is a theorem

of the other. In our example,

pop empty = empty

top empty = 0

are theorems of Stack1 . But here is another implementation of Stack0 int :

Stack2 = stack = [*int]

∧ empty = [nil]

∧ push = (λs: stack· λx: int· s+[x])

∧ pop = (λs: stack· if s=empty then push empty 0

 else s [0;..#s–1])

∧ top = (λs: stack· if s=empty then 1 else s (#s–1))

in which their negations are theorems. So Stack0 int is incomplete. That means

we can find a stronger theory of stacks by saying what pop empty and top empty

are. But do we want a stronger theory? What is the purpose of this theory?

In Stack0 , we have empty: stack and pop: stack→stack ; from them we can

prove pop empty: stack . In other words, popping the empty stack gives a stack,

though we do not know which one. An implementer is obliged to give a stack for

pop empty , though it does not matter which one. If we never want to pop an empty

Theories, Implementations, and Transformations 9

stack, then the theory is too strong. We should weaken the conjunct

pop: stack→stack and remove the implementer's obligation to provide something

that is not wanted. The weaker conjunct

∀s: stack· s+empty ⇒ pop s: stack

says that popping a nonempty stack yields a stack, but it is implied by the remaining

conjuncts and is unnecessary. Similarly from empty: stack and top: stack→X we

can prove top empty: X ; deleting top: stack→X removes an implementer's

obligation to provide an unwanted result for top empty .

We may decide that we have no need to prove anything about all stacks, and can

do without induction ∀S· empty, push S X : S ⇒ stack: S . After a little

thought, we may realize that we never need an empty stack, nor to test if a stack is

empty. We can always work on top of a given (possibly non-empty) stack, and in

most uses we are required to do so, leaving the stack as we found it. We can delete

empty: stack and all mention of empty . We must replace it with the weaker

stack + null so that we can still declare variables of type stack . If we do want to

test whether a stack is empty, we can begin by pushing some special value, one that

will not be pushed again, onto the stack; the empty test is then a test whether the

top is the special value.

For most purposes, it is sufficient to be able to push items onto a stack, pop

items off, and look at the top item. The theory we need is considerably simpler than

the one presented previously.

Stack3 = λX· stack + null

∧ (∀s: stack· ∀x: X· push s x: stack)

∧ (∀s: stack· ∀x: X· pop (push s x) = s)

∧ (∀s: stack· ∀x: X· top (push s x) = x)

For the purpose of studying stacks, as a mathematical activity, we want a strong

theory so that we can prove as much as possible. As an engineering activity, theory

design is the art of excluding all unwanted implementations while allowing all the

others. It is counter-productive to design a stronger theory than necessary; it makes

implementation harder, and it makes theory extension harder.

10 Eric Hehner, Ioannis T. Kassios

6 Imperative Stack

It is an accident of history that the usual stack specification is functional in style,

while the usual stack implementation is imperative. Functions were familiar

mathematics, suitable for formal specification, at a time when imperative programs

were still understood only as commands for the operation of a computer. We now

have a mathematical understanding of imperative, state-changing programs. We can

equally well have specifications that are both mathematical and imperative.

In the simplest version of imperative stack theory, push is a procedure with

parameter of type X , pop is a program, and top is an expression of type X . In

this theory, push 3 is a program (assuming 3: X); it changes the state.

Following this program, before any other pushes and pops, print top will print 3 .

Here is the theory.

Stack4 = ∀x: X· (top′=x ⇐ push x)

∧ (ok ⇐ push x; pop)

The first conjunct says that following a push, the top tem is the item pushed. In the

second conjunct, ok (sometimes called skip) is a program (which is a

specification, which is a boolean expression) that says that all final values of

variables equal the corresponding initial values (the identity relation on states). So

the second conjunct says that a pop undoes a push. In fact, it says that any natural

number of pushes are undone by the same number of pops.

ok use ok ⇐ push x; pop

⇐ push x; pop ok is identity for sequential composition

= push x; ok; pop Reuse ok ⇐ push x; pop and ; is monotonic

⇐ push x; push y; pop; pop

We can prove things like

top′=x ⇐ push x; push y; push z; pop; pop

which say that when we push something onto the stack, we find it there later at the

appropriate time. That is all we really want from a stack.

If we need only one stack, we obtain an economy of expression and of execution

by leaving it implicit, as in Stack4 . There is no need to say which stack to push

Theories, Implementations, and Transformations 11

onto if there is only one. (If we need more than one stack, we can add an extra

parameter to each operation.)

In imperative theories, the state is divided into two kinds of variables: the user's

variables and the implementer's variables. A user of the theory enjoys full access to

the user's variables, but cannot directly access (see or change) the implementer's

variables. A user gets access to the implementer's variables only through the theory.

On the other side, an implementer of the theory enjoys full access to the

implementer's variables, but cannot directly access (see or change) the user's

variables. An implementer gets access to the user's variables only through the

theory.

To implement Theory4 , we introduce an implementer's variable s: [*X] and

now we define

Stack5 = (push = λx: X· s:= s+[x])

∧ (pop = s:= s [0;..#s–1])

∧ (top = s (#s–1))

The proof that Stack5 implements Stack4 , as always, is just an implication.

Stack5 ⇒ Stack4

By implementing Stack4 we prove that it is consistent. But it is incomplete.

Incompleteness is a freedom for the implementer, who can trade economy against

robustness. If we care how this trade will be made, we should strengthen the theory.

For example, we could add

Stack6 = Stack4

∧ (print "error" ⇐ mkempty; pop)

A slightly fancier imperative stack theory tells us about mkempty (a program to

make the stack empty) and isempty (a boolean to say whether the stack is empty).

Letting x: X , the theory is

Stack7 = Stack4

∧ (∀x: X· ¬isempty′ ⇐ push x)

∧ (isempty′ ⇐ mkempty)

12 Eric Hehner, Ioannis T. Kassios

The imperative stack theory we presented first, Stack4 , can be weakened and still

retain its stack character. We must keep

top′=x ⇐ push x

but we do not need the composition push x; pop to leave all variables unchanged.

We do require that any natural number of pushes followed by the same number of

pops gives back the original top. The theory is

Stack8 = ∃balance· (top′=x ⇐ push x)

∧ (top′=top ⇐ balance)

∧ (balance = ok ∨ ∃x· (push x; balance; pop))

This weaker theory allows an implementation in which popping does not restore the

implementer's variable s to its pre-pushed value, but instead marks the last item as

“garbage”.

A weak theory can be extended in ways that are excluded by a strong theory. For

example, we can add the names count (of type nat) and start (a program), as

follows:

Stack9 = Stack8

∧ (count′ = 0 ⇐ start)

∧ (∀x: X· count′ = count+1 ⇐ push x)

∧ (count′ = count+1 ⇐ pop)

so that count counts the number of pushes and pops. From a software engineering

point of view, the weakest theory is best.

7 Functional Tree

Here is a strong theory that is good for mathematicians who want to study trees.

Tree0 = λX· emptree: tree

∧ graft: tree→X→tree→tree

∧ (∀T· emptree, graft T X T: T ⇒ tree: T)

∧ (∀t, u: tree· ∀x: X· graft t x u + emptree)

Theories, Implementations, and Transformations 13

∧ (∀t, u, v, w: tree· ∀x, y: X·

 graft t x u = graft v y w = t=v ∧ x=y ∧ u=w)

∧ (∀t, u: tree· ∀x: X· left (graft t x u) = t)

∧ (∀t, u: tree· ∀x: X· root (graft t x u) = x)

∧ (∀t, u: tree· ∀x: X· right (graft t x u) = u)

For programming purposes, a simpler, weaker theory is sufficient. As with stacks,

we don't really need to be given an empty tree. As long as we are given some tree,

we can build a tree with a distinguished root that serves the same purpose. And we

probably don't need tree induction.

Tree1 = λX· tree + null

∧ (∀t, u: tree· ∀x: X· graft t x u: tree)

∧ (∀t, u: tree· ∀x: X· left (graft t x u) = t)

∧ (∀t, u: tree· ∀x: X· root (graft t x u) = x)

∧ (∀t, u: tree· ∀x: X· right (graft t x u) = u)

If lists and recursive data definition are implemented, then we can implement a tree of

integers by the following theory.

Tree2 = tree = emptree, graft tree int tree

∧ emptree = [nil]

∧ (graft = λt: tree· λx: int· λu: tree· [t; x; u])

∧ (left = λt: tree· t 0)

∧ (right = λt: tree· t 2)

∧ (root = λt: tree· t 1)

Here is another implementation.

Tree3 = tree = emptree, graft tree int tree

∧ emptree = 0

∧ (graft = λt: tree· λx: int· λu: tree·

 "left"→t | "root"→x | "right"→u)

∧ (left = λt: tree· t "left")

∧ (right = λt: tree· t "right")

∧ (root = λt: tree· t "root")

14 Eric Hehner, Ioannis T. Kassios

According to Tree2 , the tree

3

2 7

5

is

[[[nil]; 2; [[nil]; 5; [nil]]]; 3; [[nil]; 7; [nil]]]

and according to Tree3 it is

 "left" → ("left" → 0

| "root" → 2

| "right" → ("left" → 0

| "root" → 5

| "right" → 0))

| "root" → 3

| "right" → ("left" → 0

| "root" → 7

| "right" → 0)

Both Tree2 and Tree3 implement Tree0 , and therefore also Tree1 .

Tree2 ∨ Tree3 ⇒ Tree0 int ⇒ Tree1 int

8 Imperative Tree

Imagine a tree that is infinite in all directions; there are no leaves and no root. You

are standing at one node in the tree facing one of the three directions up (towards the

parent of this node), left (towards the left child of this node), or right (towards the

right child of this node). Variable node (of type X) tells the value of the item

where you are, and it can be assigned a new value. Variable aim tells what direction

you are facing, and it can be assigned a new direction. Program go moves you to

the next node in the direction you are facing, and turns you facing back the way you

Theories, Implementations, and Transformations 15

came. For example, we might begin with

aim:= up; go

and then look at aim to see where we came from. For later use, we might then

assign

node:= 3

The theory uses an auxiliary definition: work means “Do anything, wander around

changing the values of nodes if you like, but do not go from this node (your

location at the start of work) in this direction (the value of variable aim at the

start of work). End where you started, facing the way you were facing at the start.”.

Tree4 = ∃work·

((aim=up) = (aim′+up) ⇐ go)

∧ (node′=node ∧ aim′=aim ⇐ go; work; go)

∧ (work = ok

∨ (∃x· node:= x)

∨ (∃a, b: up, left, right· a=aim+b

 ∧ (aim:=b; go; work; go; aim:= a))

∨ (work; work))

9 Transformation

A program is a specification of computer behavior. Sometimes (but not always) a

program is the clearest kind of specification. Sometimes it is the easiest kind of

specification to write. If we write a specification as a program, there is no work to

implement it.

Even though a specification may already be a program, we can, if we like,

implement it differently. An imperative theory is presented in terms of user's

variables and implementer's variables; the former provide the user's interface to the

theory; the latter may be for implementation purposes or they may just be for

explanatory purposes. Perhaps the implementer's variables were chosen to make the

specification as clear as possible, but other implementer's variables might be more

storage-efficient, or provide faster access on average. Since a theory user has no

access to the implementer's variables except through the theory, an implementer is

free to change them in any way that provides the same theory to the user.

Let the user's variables be u , and let the implementer's variables be v (u and

v represent any number of variables). Now suppose we want to replace the

16 Eric Hehner, Ioannis T. Kassios

implementer's variables by new implementer's variables w . We accomplish this

transformation by means of a transformer, which is a boolean expression D relating

v and w such that ∀w· ∃v· D . Let D′ be the same as D but with primes on all

the variables. Then each specification S in the theory is transformed to

∀v· D ⇒ ∃v′· D′ ∧ S

Specification S is in variables u and v, and the transformed specification is in

variables u and w.

Transformation is invisible to the user. The user imagines that the

implementer's variables are initially in state v , and then, according to specification

S , they are finally in state v ′ . Actually, the implementer's variables will initially

be in state w related to v by D ; the user will be able to suppose they are in a

state v because ∀w· ∃v· D . The implementer's variables will change state from

w to w ′ according to the transformed specification ∀v· D ⇒ ∃v′· D′ ∧ S . This

says that whatever related initial state v the user was imagining, there is a related

final state v ′ for the user to imagine as the result of S , and so the fiction is

maintained. Here is a picture of it.

w′

v v′

w

D′D

S

∀v· D ⇒ ∃v′· D′ ∧ S

Implementability of S (in its variables v and v′) becomes (via the transformer D

and D′) the new specification (in the new variables w and w ′). This

transformation is one form of data refinement.

10 Limited Queue

We illustrate theory transformation with the example of an imperative queue of

limited size. Here's the theory we start with.

Theories, Implementations, and Transformations 17

Queue0 =
 ∀x: X· (mkemptyq ⇒ isemptyq′)

∧ (isemptyq ∧ ¬isfullq ∧ join x ⇒ front′=x ∧ ¬isemptyq′)
∧ (¬isemptyq ∧ leave ⇒ ¬isfullq′)
∧ (¬isemptyq ∧ ¬isfullq ∧ join x ⇒ front′=front ∧ ¬isemptyq′)
∧ (isemptyq ∧ ¬isfullq ⇒ (join x; leave = mkemptyq))

∧ (¬isemptyq ∧ ¬isfullq ⇒ (join x; leave = leave; join x))

Let the limit be positive natural n , and let Q: [n*X] and p: nat be implementer's

variables. Then here is a theory to implement Queue0 .

Queue1 = (mkemptyq = p:= 0)

∧ (isemptyq = p=0)

∧ (isfullq = p=n)

∧ (join = λx: X· Qp:= x; p:= p+1)

∧ (leave = for i:= 1;..p do Q(i–1):= Qi; p:= p–1)

∧ (front = Q0)

A user of Queue1 would be well advised to precede any use of join with the test

¬isfullq , and any use of leave or front with the test ¬isemptyq , but that's not

our business at the moment. A new item joins the back of the queue at position p

taking constant time to do so. The front item is always found instantly at position

0 . Unfortunately, removing the front item from the queue takes time p–1 to shift

all remaining items down one index.

We want to transform the queue so that all operations are instant. Variables Q

and p will be replaced by R: [n*X] and f, b: 0,..n with f indicating the current

front of the queue and b its back.

Q

R
 f b

leave from here and shift left
join here join here

leave from here

nn 00
R

 f

join here
leave from here

n0

The idea is that b and f move cyclically around the list; when f is to the left of

b the queue items are between them; when b is to the left of f the queue items are

in the outside portions.

Here is the transformer D .

18 Eric Hehner, Ioannis T. Kassios

0 ≤ p = b–f < n ∧ Q[0;..p] = R[f;..b]

∨ 0 < p = n–f+b ≤ n ∧ Q[0;..p] = R[(f;..n); (0;..b)]

One great thing about theory transformation is that once we have stated the

transformer, which is the relation between the old and new variables, there is no

further invention required; the operations of the theory are transformed for us. First

we transform mkemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ mkemptyq

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q by several omitted steps

= f′=b′
⇐ f:= 0; b:= 0

The other great thing about theory transformation is that it never transforms

incorrectly, even if we have an incorrect transformer! Next we transform

u:= isemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isemptyq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=0) ∧ p′=p ∧ Q′=Q

by several omitted steps

= f<b ∧ f′<b′ ∧ b–f = b′–f′ ∧ R[f;..b] = R′[f′;..b′] ∧ ¬u′
∨ f<b ∧ f′>b′ ∧ b–f = n+b′–f′

∧ R[f;..b] = R′[(f′;..n); (0;..b′)] ∧ ¬u′
∨ f>b ∧ f′<b′ ∧ n+b–f = b′–f′

∧ R[(f;..n); (0;..b)] = R′[f′;..b′] ∧ ¬u′
∨ f>b ∧ f′>b′ ∧ b–f = b′–f′

∧ R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)] ∧ ¬u′

Initially R might be in the “inside” or “outside” configuration, and finally R ′

might be either way, so that gives us four disjuncts. Very suspiciously, we have

¬u′ in every case. That's because f=b is missing! So the transformed operation is

unimplementable. That's the transformer's way of telling us that the new variables

do not hold enough information to answer whether the queue is empty. The problem

occurs when f=b because that could be either an empty queue or a full queue. A

solution is to add a new variable m: bool to say whether we have the “inside” mode

or “outside” mode. We revise the transformer D as follows:

Theories, Implementations, and Transformations 19

m ∧ 0 ≤ p = b–f < n ∧ Q[0;..p] = R[f;..b]

∨ ¬m ∧ 0 < p = n–f+b ≤ n ∧ Q[0;..p] = R[(f;..n); (0;..b)]

Now we have to retransform mkemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ mkemptyq

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q by several omitted steps

= m′ ∧ f′=b′
⇐ m:= †; f:= 0; b:= 0

Now we hope for more success transforming u:= isemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isemptyq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=0) ∧ p′=p ∧ Q′=Q

by several omitted steps

= m ∧ f<b ∧ m′ ∧ f′<b′ ∧ b–f = b′–f′
∧ R[f;..b] = R′[f′;..b′] ∧ ¬u′

∨ m ∧ f<b ∧ ¬m′ ∧ f′>b′ ∧ b–f = n+b′–f′
∧ R[f;..b] = R′[(f′;..n); (0;..b′)] ∧ ¬u′

∨ ¬m ∧ f>b ∧ m′ ∧ f′<b′ ∧ n+b–f = b′–f′
∧ R[(f;..n); (0;..b)] = R′[f′;..b′] ∧ ¬u′

∨ ¬m ∧ f>b ∧ ¬m′ ∧ f′>b′ ∧ b–f = b′–f′
∧ R[(f;..n); (0;..b)] = R′[(f′;..n); (0;..b′)] ∧ ¬u′

∨ m ∧ f=b ∧ m′ ∧ f′=b′ ∧ u′
∨ ¬m ∧ f=b ∧ ¬m′ ∧ f′=b′

∧ R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)] ∧ ¬u′
⇐ u′ = (m ∧ f=b) ∧ f′=f ∧ b′=b ∧ R′=R

= u:= m ∧ f=b

The transformed operation offered us the opportunity to rotate the queue within R ,

but we declined to do so. Each of the remaining transformations offers the same

useless opportunity, and we decline each time.

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isfullq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=n) ∧ p′=p ∧ Q′=Q

by several omitted steps

⇐ u:= ¬m ∧ f=b

20 Eric Hehner, Ioannis T. Kassios

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ join x

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[0;..p]+x+Q[p+1;..n] ∧ p′=p+1

by several omitted steps

⇐ Rb:= x; if b+1=n then (b:= 0; m:= ƒ) else b:= b+1

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ leave

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[(1;..p); (p;..n)] ∧ p′=p–1

by several omitted steps

⇐ if f+1=n then (f:= 0; m:= †) else f:= f+1

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= front)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=Q0 ∧ p′=p ∧ Q′=Q

by several omitted steps

⇐ u:= R f

Queue2 = (mkemptyq = m:= †; f:= 0; b:= 0)

∧ (isemptyq = m ∧ f=b)

∧ (isfullq = ¬m ∧ f=b)

∧ (join = λx: X· Rb:= x; if b+1=n then (b:= 0; m:= ƒ)

else b:= b+1)

∧ (leave = if f+1=n then (f:= 0; m:= †) else f:= f+1)

∧ (front = R f)

A transformation can be done by steps, as a sequence of smaller transformations. A

transformation can be done by parts, as a conjunction of smaller transformations.

But we don't pursue the topic further.

11 Incompleteness

Transformation is sound in the sense that a user cannot tell that a transformation has

been made; that was the criterion of its design. But it is possible to find two

theories that behave identically from a user's view, but for which there is no

transformer to transform one into the other. Transformation is therefore incomplete.

An example to illustrate incompleteness comes from Gardiner and Morgan [3].

The user's variable is i and the implementer's variable is j , both of type nat . The

theory is

Theories, Implementations, and Transformations 21

GM0 = (initialize = i′ = 0 ≤ j′ < 3)

∧ (step = if j>0 then (i:= i+1; j:= j–1) else ok)

The user can look at i but not at j . The user can initialize , which starts i at 0

and starts j at any of 3 values. The user can then repeatedly step and observe that

i increases 0 or 1 or 2 times and then stops increasing, which effectively tells

the user what value j started with.

If this were a practical problem, we would notice that initialize can be refined,

resolving the nondeterminism. For example,

initialize ⇐ i:= 0; j:= 0

We could then transform initialize and step to get rid of j , replacing it with

nothing. The transformer is j=0 . It transforms the implementation of initialize as

follows:

∀j· j=0 ⇒ ∃j′· j′=0 ∧ i′=j′=0

= i:= 0

And it transforms step as follows:

∀j· j=0 ⇒ ∃j′· j′=0 ∧ step

= ∀j· j=0 ⇒ ∃j′· j′=0 ∧ if j>0 then (i:= i+1. j:= j–1) else ok

= ok

The very simple transformed theory

GM1 = (initialize = i:= 0)

∧ (step = ok)

cannot be distinguished from the original by the user. If this were a practical

problem, we would be done. But the theoretical problem is to replace j with

boolean variable b without resolving the nondeterminism, producing the theory

GM2 = (initialize = i′=0)

∧ (step = if b ∧ i<2 then i′ = i+1 else ok)

22 Eric Hehner, Ioannis T. Kassios

Now initialize starts b either at † , meaning that i will be increased, or at ƒ ,

meaning that i will not be increased. Each use of step tests b to see if we might

increase i , and i<2 to ensure that i remains below 3 . If i is increased, b is

again assigned either of its two values. The user will see i start at 0 and increase

0 or 1 or 2 times and then stop increasing, exactly as in the original specification

GM0 . The nondeterminism is maintained. But there is no transformer in variables

i , j , and b to do the job; transformation is an incomplete method.

Where there's a will, there's a way. The criterion for being a transformer D is

∀new· ∃old· D . This criterion is sufficient to guarantee that when the old variables

are replaced by the new , the result will be correct, but it is not always necessary for

correctness. First, we rewrite GM0 by introducing variable k to stand for the

nondeterministically chosen initial value of j .

GM0 = ∃k: 0,..3· (initialize = i:= 0; j:= k)

∧ (step = if j>0 then (i:= i+1; j:= j–1) else ok)

Next we replace j with b using i+j=k ∧ b=(j>0) . This does not meet the

criterion for being a transformer, but it is still safe because i+j=k is established by

initialize and maintained invariant by step , and b=(j>0) is a transformer (although

it produces an unimplementable result). Now we transform.

∀j· i+j=k ∧ b=(j>0) ⇒ ∃j′· i′+j′=k ∧ b′=(j′>0) ∧ initialize

= ∀j· i+j=k ∧ b=(j>0) ⇒ ∃j′· i′+j′=k ∧ b′=(j′>0) ∧ i′=0 ∧ j′=k

= b=(i<k) ⇒ (i:= 0; b:= i<k)

∀j· i+j=k ∧ b=(j>0) ⇒ ∃j′ i′+j′=k ∧ b′=(j′>0) ∧ step

= ∀j· i+j=k ∧ b=(j>0)

 ⇒ ∃j′· i′+j′=k ∧ b′=(j′>0)

 ∧ if j>0 then i′=i+1 ∧ j′=j–1 else i′=i ∧ j′=j

= b=(i<k) ⇒ b′=(i′<k) ∧ if b then i′=i+1 else i′=i

= b=(i<k) ⇒ if b ∧ i<2 then (i:=i+1; b:= i<k) else ok

The resulting theory is

Theories, Implementations, and Transformations 23

GM3 = ∃k: 0,..3·

(initialize = b=(i<k) ⇒ (i:= 0; b:= i<k))

∧ (step = b=(i<k)

 ⇒ if b ∧ i<2 then (i:=i+1; b:= i<k) else ok)

Variable j has disappeared, and variable b has appeared, as desired. But we also

have k , which we added just to help make the transformation, and now it is no

longer wanted. Eliminating it produces GM2 as desired.

The incompleteness of transformation, like the incompleteness of first-order

logic, is demonstrated with an example carefully crafted to show the incompleteness,

not one that would ever arise in practice. We should not switch to a more

complicated rule, or combination of rules, that are complete. We should stay with

the simple rule that is adequate for all transformations that will ever arise in any

problem other than a demonstration of theoretical incompleteness. And even then, all

we need is to soften the criterion for being a transformer. For further reading, see [7].

12 Conclusion

A theory can be presented as a boolean expression. Theories can then be combined

by ordinary conjunction, and by other boolean connectives, and compared for strength

by ordinary implication. Strong theories serve mathematicians who want to prove a

lot, but weak theories are better for software engineers who need to implement them.

This kind of theory presentation is both a simplification and a generalization of the

early work. By reducing theories to boolean expressions we understand them in the

simplest possible way, and we allow all combinations that make logical sense.

Theory refinement is just implication. Implementation can also be expressed as a

theory in a particular form. Then implementation is just a refinement, and the proof

of correctness of the implementation is just a boolean implication. This kind of

theory presentation, as a single boolean expression, works for both the functional

style and imperative (state-changing) style of theory.

Theory transformation is a safe and automatic way to reimplement a theory, once

the transformer has been written. Although the method of transformation is

incomplete in a theoretical sense, it is complete enough for all practical purposes.

24 Eric Hehner, Ioannis T. Kassios

References

1. J.-R.Abrial: the B book, Assigning Programs to Meanings, Cambridge

University Press, 1996

2. R.M.Burstall, J.A.Goguen: “Putting Theories Together to make Specifications”,

in R.Reddy (ed.): Proceedings of the fifth International Joint Conference on

Artificial Intelligence, volume 6 pages 1045-1058, Morgan Kaufman ,

Cambridge MA, 1977

3. P.H.B.Gardiner, C.C.Morgan: “a Single Complete Rule for Data Refinement”,

Formal Aspects of Computing, volume 5 number 4 pages 367-382, 1993

4. J.V.Guttag, J.J.Horning: “the Algebraic Specification of Abstract Data Types”,

Acta Informatica, volume 10 pages 27-52, 1978

5. E.C.R.Hehner: a Practical Theory of Programming, first edition Springer 1993,

current edition www.cs.utoronto.ca/~hehner/aPToP

6. I.T.Kassios: Theory Theory and an Attempt to Orient Objections to Object

Orientation, MSc thesis, University of Toronto, 2001

7. W.-P.deRoever, K.Engelhardt: Data Refinement: Model-Oriented Proof Methods

and their Comparisons, tracts in Theoretical Computer Science volume 47,

Cambridge University Press, 1998

8. J.M.Spivey: Introducing Z: a Specification Language and its Formal Semantics,

Cambridge University Press, 1988

written 2001, presented at ZB2002 second annual Z and B conference, Grenoble

France, 2002 January 23-25

Theories, Implementations, and Transformations 25

