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Abstract.   The purpose of this paper is to try to put theory presentation 

and structuring in the simplest possible logical setting in order to improve 

our understanding of it.  We look at how theories can be combined, and 

compared for strength.  We look at theory refinement and implementation, 

and what constitutes proof of correctness.  Our examples come from both 

the functional style and imperative (state-changing) style of theory.  

Finally, we explore how one implementation can be transformed to 

another.

0  Introduction

A classic paper by Burstall and Goguen in 1977 [2] taught us to think about data 

types used in computer programs as logical theories, presented by axioms, whose 

properties can be explored by logical deduction.  The following year, a paper by 

Guttag and Horning [4] developed the idea further, showing us the algebraic properties 

of data types presented as theories.  Another important contribution came from Abrial 

[8] in the design of Z, and more recently B [1].  He brought to theory design all the 

structuring and scoping that programming languages provide, enabling us to build 

large theories by composing smaller ones.  With the work of the Z and B 

community, and a change of terminology, theory design became an important part of 

software development.

The purpose of this paper is to try to put theory presentation and structuring in 

the simplest possible logical setting in order to improve our understanding of it.  It is 

not the purpose of this paper to provide a notation or language for practical 

engineering use;  for that task the Z and B community are the leaders.



1  Notation

Notation is not the point of this paper;  as much as possible, we will use standard, or 

at least familiar, notations.  The two booleans are  †  and  ƒ , and the boolean 

operators are  ¬ ∧ ∨ = + ⇒ ⇐ .  The same equality  =  and unequality  +  will be 

used with any type.  We also use a large version  = ⇒ ⇐  of equality and 

implication that are identical to the small version except for their precedence;  the 

only purpose is to save a clutter of parentheses.  The empty bunch is  null .  The 

comma (,) is bunch union, which is commutative, idempotent, and associative.  The 

colon (:) is bunch inclusion.  For example,

2, 9 :  0, 2, 5, 9

is a boolean expression with value  †  because the left operand of colon is included 

in the right operand.  We use the asymmetric notation  x,..y  for the bunch of 

integers from and including  x  up to but excluding  y .  The empty list is  [nil] , and 

the list  [2; 6; 4; 8]  contains four items.  The notation  [x;..y]  is used for the list of 

integers from and including  x  up to but excluding  y .  Lists are indexed from  0 .  

List formation distributes over bunch union, so if  nat  is the natural numbers, then  

[nat]  is the list whose one item is the bunch of natural numbers, or equally, the 

bunch of all lists whose one item is a natural number.  A star denotes repetition of an 

item, so  [*nat]  is all lists of natural numbers.  We use  #  for list length.  We use a 

standard lambda notation  λx: D· fx  for functions, and juxtaposition for function 

application.  We use  A→B  for the bunch of all functions with domain at least  A   

and range at most  B .  Quantifiers  ∀ ∃  apply to functions, but for the sake of 

familiarity they replace the lambda.

Here are all the notations of the paper in a precedence table.

0. †   ƒ   ( )   [ ]   numbers   names (true, false, precedence, list brackets)

1. juxtaposition (function application) left-to-right

2. #   *   → (list length, item repetition, function space) right-to-left

3. +   –   + (addition, subtraction, catenation) left-to-right

4. ;   ;.. (sequencing of list items) associative

5. ,   ,..   | (bunch union, function selection) associative

6. =   +    <   >   ≤   ≥   : (equality, unequality, order, inclusion) continuing

7. ¬ (negation) right-to-left

8. ∧ (conjunction) associative
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9. ∨ (disjunction) associative

10. ⇒   ⇐ (implication) continuing

11. := (assignment)

12. if then else (if then else)

13. ; (sequential composition) associative

14. λ·   ∀ ·   ∃· (function, quantifiers)

15. =   ⇒    ⇐ (equality, implication) continuing

To say that  =  is continuing is to say that  a = b = c  neither associates to the left 

nor associates to the right, but means  a = b  ∧  b = c . A mixture of continuing 

operators can be used;  for example,  a ≤ b < c  means  a ≤ b  ∧  b < c .  For further 

details on notation and basic theories please consult [5] or [6].

2  Theories

Here is a little theory presented in a style similar to [2] and [4].

Theory0: names: chain, start, link, isStart

signatures: start: chain

link: chain→chain

isStart: chain→bool

axioms: isStart start

∀c: chain· ¬ isStart (link c)

Theory0 introduces four new names into our vocabulary.  The signatures section tells 

us something about the role these names will play in the theory.  Then the axioms 

tell us what can be proven, what are the theorems, in this theory.

The first problem with this presentation of Theory0 is that names cannot be 

attached to theories.  For example, this theory uses the name  bool , and many others 

do too, and each of them is telling us something about  bool .  And when we build 

large theories by composing smaller ones, no particular theory in the composition 

can claim a name as its own.  And it isn't just names that get introduced by theories;  

symbols like  ≤ , or in our example  ∀  and  ¬ , and even  = , are used in many 

theories, and each of them is telling us something more about the use of those 

symbols.  Names and symbols are defined by their use in all theories where they 

appear;  and we can always add more theories to the collection.  As part of a library of 
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theories, we need a linked, browsable dictionary of names and symbols, telling us 

which theories use them.  This dictionary should be generated automatically from the 

library of theories, so that it is always up-to-date.  The first change to theory 

presentation is to remove the list of names.

The next change to theory presentation is to consider a signature to be a kind of 

boolean expression.  One of the uses of Bunch Theory is as a fine-grained type 

theory.  The boolean expression

5:  0, 3, 5, 8

has value  †  and says, “ 5  is included among  0, 3, 5, 8 ”.  But we can also read it 

as “ 5  has type  0, 3, 5, 8 ”.  Defining  nat  as the bunch of all natural numbers, the 

boolean expression  5: nat  has value  † .  And so  x: nat  can be given as an axiom 

about  x .  So too  x , y: nat  can be an axiom, just as  3, 5:  0, 3, 5, 8  has value  

†  .  The expression  A→B  consists of all functions with domain at least  A   and 

range at most  B .  For example,

(λn: nat· n+1) :  nat→nat

has value  † .  And so  f: nat→nat  can be an axiom about  f .  By “currying”,  

A→B→C  consists of two-variable functions, and so on.

The final change to theory presentation is just to write all the axioms as one big 

axiom by taking their conjunction.  Now a theory consists of one single axiom, so 

there is now no difference between a theory and an axiom.  Theory0 can be written as 

follows.

Theory0       = start: chain

∧ link: chain→chain

∧ isStart: chain→bool

∧ isStart start

∧ ∀c: chain· ¬ isStart (link c)

3  Composition

The original paper by Burstall and Goguen [2] presents four operations on theories: 

combination, enrichment, induction, and derivation.  To illustrate theory 
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combination, here is a second theory.

Theory1       = start: chain

∧ link: chain→chain

∧ (∀c: chain· start + link c)

∧ (∀c, d: chain· (c=d) = (link c = link d))

Theory0  and  Theory1  have much in common, but also some differences;  there are 

theorems in each that are not theorems in the other.  With our form of theory 

presentation, we can combine the two theories with ordinary boolean conjunction.

Theory2   =   Theory0 ∧ Theory1

Burstall and Goguen's next theory operation, enrichment, is also just conjunction, 

but with further axioms rather than with a named theory.  Here is an example.

Theory3       = Theory2

∧ ∀c: chain· start ≤ c < link c

The next of Burstall and Goguen's theory operations adds a structural induction 

scheme over the generators of the new data type.  For us, it is again just conjunction 

of another axiom.

Theory4       = Theory3

∧ ∀P: (chain→bool)·

P start ∧ (∀c: chain· P c ⇒ P (link c))

⇒ ∀c: chain· P c

That is the familiar form of induction;  a neater, equivalent form is as follows.

Theory4       = Theory3

∧ ∀C· start, link C: C   ⇒   chain: C

To briefly explain this axiom, most operators and functions distribute over bunch 

union.  For example,

(2, 5, 9) + 1   =   (3, 6, 10)
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So  link C  consists of all the results of applying  link  to things in  C .  The axiom 
says that if  start  and all the links of things in  C  are included in  C , then  chain  is 
included in  C .  The antecedent can be rewritten as

start: C    ∧    link: C→C

and, regarding  C  as the unknown,  chain  is one solution.  The axiom therefore says 
that  chain  is the smallest solution.

Burstall and Goguen's final operation on theories, derivation, allows part of a 
theory to be hidden from the theory users.  For us, that's existential quantification.

Theory5       =       ∃start: chain· Theory4

Theory5  has all the same theorems as  Theory4  minus those that mention  start .  If 
we want to keep all the theorems of  Theory4  but rename  start  as  new , define

Theory6       =       ∃start: chain· start=new ∧ Theory4

We can combine theories with other boolean operators too, such as disjunction and 
implication.  For example,

Theory7       =       (∀c: chain· new ≤ c) ⇒ Theory6

This makes  Theory7  such that if we had the axiom  ∀c: chain· new ≤ c  then we 
would have  Theory6 .  In a vague sense,  Theory7  is  Theory6  without  
∀c: chain· new ≤ c .  To be precise, if we take  Theory7  and add the axiom  
∀c: chain· new ≤ c , we get back  Theory6 .

Theory7 ∧ ∀c: chain· new ≤ c       =       Theory6 ∧ ∀c: chain· new ≤ c

New theories are not always built by additions to old theories;  sometimes they are 
built by deletions.  One of the problems with object-orientation is that, although 
subclassing allows us to add attributes, there is no way to delete attributes and make a 
superclass, nor to make an interclass between two existing classes.

These examples illustrate that our theory presentation is both a simplification 
and a generalization of the early work.  By reducing theories to boolean expressions 
we understand them in the simplest possible way, and we allow all combinations that 
make logical sense.
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4  Refinement and Implementation

A theory can serve as a specification of a data type, and of computation in general.  

Specifications can be refined, usually by resolving nondeterminism.  Specification  A  

refines specification  B  if all computer behavior satisfying  A  also satisfies  B .  If 

theories are expressed as single boolean expressions,

theory  A  refines theory  B means A⇒B

theory  B  is refined by theory  A means B⇐A

Refinement is just implication.  So far, we have

Theory6  ⇒  Theory7

Theory4  ⇒  Theory5

Theory4  ⇒  Theory3

Theory3  ⇒  Theory2

Theory2  ⇒  Theory1

Theory2  ⇒  Theory0

When we define a theory, and especially when we combine theories, there is always 

the danger of inconsistency.  The only way to prove the consistency of a theory is to 

implement it.  As software engineers, our goal is to design useful  theories (they 

must be consistent to be useful), and to implement them.  A theory is said to be 

implemented when all names and symbols appearing in it have been implemented.  A 

name or symbol is implemented by defining it in terms of other names and symbols 

that are implemented.  Ultimately, the computing machinery provides the ground 

theory on top of which all other theories are implemented.  (To logicians, an 

implementation is known as a “model”, and the ultimate machinery is usually taken 

to be set theory, although they might claim that the model is the sets themselves and 

not set theory.)

An implementation can be expressed in exactly the same form as a theory:  a 

boolean expression.  Here is an example implementation of  Theory4 , assuming that  

nat  is an implemented data type, and that functions are implemented.

Imp        = chain = nat

∧ start = 0

∧ isStart = (λc: nat· c=0)

∧ link = (λc: nat· c+1)
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An implementation is also a theory, but of a particular form.  It is a conjunction of 

equations, and each equation has a left side consisting of one of the names needing an 

implementation, and a right side employing only names and symbols that are already 

implemented.

The benefit in expressing an implementation in the same form as a theory is that 

the proof of correctness of the implementation is now just a boolean implication.  

We prove that  Imp  correctly implements  Theory4  by proving

Imp  ⇒  Theory4

Implementation is just refinement by an implemented theory.  By the transitivity of 

implication we have immediately that  Imp  also implements  Theory5 ,  Theory3 ,  

Theory2 ,  Theory1 , and  Theory0 .

5  Functional Stack

From a typical mathematician's viewpoint, a stronger theory is a better theory 

because it allows us to prove more.  But the theory must not be so strong as to be 

inconsistent, for then we can prove everything trivially.  The game is to add axioms, 

approaching the brink of inconsistency as closely as possible without falling over.  

For example, here a strong but consistent theory of stacks.

Stack0    =   λX· empty: stack

∧ push: stack→X→stack

∧ pop: stack→stack

∧ top: stack→X

∧ (∀S· empty, push S X: S   ⇒    stack: S)

∧ (∀s: stack· ∀x: X· push s x + empty)

∧ (∀s, t: stack· ∀x, y: X·

  push s x = push t y   =   s=t ∧ x=y)

∧ (∀s: stack· ∀x: X· pop (push s x) = s)

∧ (∀s: stack· ∀x: X· top (push s x) = x)

And here is an implementation, assuming lists, functions, and integers are already 

implemented.
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Stack1 = stack   =   [*int]

∧ empty   =   [nil]

∧ push   =   (λs: stack· λx: int· s+[x])

∧ pop  =  (λs: stack· if s=empty then empty else s [0;..#s–1])

∧ top   =   (λs: stack· if s=empty then 0 else s (#s–1))

where  [*int]  is all lists of integers,  [nil]  is the empty list,  +  is catenation,  #  is 

length, and  s [0;..#s–1]  is list  s  up to but not including its last item.  To prove 

that  Stack1  is an implementation of  Stack0  we must prove

Stack1 ⇒  Stack0 int

but we won't spend the space here.

The only way to prove the consistency of a theory is to implement it.  The only 

way to prove the incompleteness of a theory is to implement it twice such that some 

boolean expression is a theorem of one implementation, and its negation is a theorem 

of the other.  In our example,

pop empty = empty

top empty = 0

are theorems of  Stack1 .  But here is another implementation of  Stack0 int :

Stack2      = stack   =   [*int]

∧ empty   =   [nil]

∧ push   =   (λs: stack· λx: int· s+[x])

∧ pop   =   (λs: stack· if s=empty then push empty 0 

                              else s [0;..#s–1])

∧ top   =   (λs: stack· if s=empty then 1 else s (#s–1))

in which their negations are theorems.  So  Stack0 int  is incomplete.  That means 

we can find a stronger theory of stacks by saying what  pop empty  and  top empty  

are.  But do we want a stronger theory?  What is the purpose of this theory?

In  Stack0 , we have  empty: stack  and  pop: stack→stack ;  from them we can 

prove  pop empty: stack .  In other words, popping the empty stack gives a stack, 

though we do not know which one.  An implementer is obliged to give a stack for  

pop empty , though it does not matter which one.  If we never want to pop an empty 
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stack, then the theory is too strong.  We should weaken the conjunct  

pop: stack→stack  and remove the implementer's obligation to provide something 

that is not wanted.  The weaker conjunct

∀s: stack· s+empty  ⇒  pop s: stack

says that popping a nonempty stack yields a stack, but it is implied by the remaining 

conjuncts and is unnecessary.  Similarly from  empty: stack  and  top: stack→X  we 

can prove  top empty: X  ;  deleting  top: stack→X  removes an implementer's 

obligation to provide an unwanted result for  top empty .

We may decide that we have no need to prove anything about all stacks, and can 

do without  induction  ∀S· empty, push S X : S    ⇒   stack: S  .  After a little 

thought, we may realize that we never need an empty stack, nor to test if a stack is 

empty.  We can always work on top of a given (possibly non-empty) stack, and in 

most uses we are required to do so, leaving the stack as we found it.  We can delete  

empty: stack  and all mention of  empty .  We must replace it with the weaker  

stack + null  so that we can still declare variables of type  stack .  If we do want to 

test whether a stack is empty, we can begin by pushing some special value, one that 

will not be pushed again, onto the stack;  the empty test is then a test whether the 

top is the special value.

For most purposes, it is sufficient to be able to push items onto a stack, pop 

items off, and look at the top item.  The theory we need is considerably simpler than 

the one presented previously.

Stack3    =   λX· stack + null

∧ (∀s: stack· ∀x: X· push s x: stack)

∧ (∀s: stack· ∀x: X· pop (push s x) = s)

∧ (∀s: stack· ∀x: X· top (push s x) = x)

For the purpose of studying stacks, as a mathematical activity, we want a strong 

theory so that we can prove as much as possible.  As an engineering activity, theory 

design is the art of excluding all unwanted implementations while allowing all the 

others.  It is counter-productive to design a stronger theory than necessary;  it makes 

implementation harder, and it makes theory extension harder.
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6  Imperative Stack

It is an accident of history that the usual stack specification is functional in style, 

while the usual stack implementation is imperative.  Functions were familiar 

mathematics, suitable for formal specification, at a time when imperative programs 

were still understood only as commands for the operation of a computer.  We now 

have a mathematical understanding of imperative, state-changing programs.  We can 

equally well have specifications that are both mathematical and imperative.

In the simplest version of imperative stack theory,  push  is a procedure with 

parameter of type  X ,  pop  is a program, and  top  is an expression of type  X  .  In 

this theory,  push 3  is a program (assuming  3: X  );  it changes the state.  

Following this program, before any other pushes and pops,  print top  will print  3 .  

Here is the theory.

Stack4   =    ∀x: X· (top′=x   ⇐    push x)

∧ (ok   ⇐    push x;  pop)

The first conjunct says that following a push, the top tem is the item pushed.  In the 

second conjunct,  ok  (sometimes called  skip ) is a program (which is a 

specification, which is a boolean expression) that says that all final values of 

variables equal the corresponding initial values (the identity relation on states).  So 

the second conjunct says that a pop undoes a push.  In fact, it says that any natural 

number of pushes are undone by the same number of pops.

ok use  ok   ⇐    push x;  pop

⇐ push x;  pop ok  is identity for sequential composition

= push x;  ok;  pop Reuse  ok  ⇐  push x; pop  and  ;  is monotonic

⇐ push x;  push y;  pop;  pop

We can prove things like

top′=x   ⇐    push x;  push y;  push z;  pop;  pop

which say that when we push something onto the stack, we find it there later at the 

appropriate time.  That is all we really want from a stack.

If we need only one stack, we obtain an economy of expression and of execution 

by leaving it implicit, as in  Stack4 .  There is no need to say which stack to push 
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onto if there is only one.  (If we need more than one stack, we can add an extra 

parameter to each operation.)

In imperative theories, the state is divided into two kinds of variables:  the user's 

variables and the implementer's variables.  A user of the theory enjoys full access to 

the user's variables, but cannot directly access (see or change) the implementer's 

variables.  A user gets access to the implementer's variables only through the theory.  

On the other side, an implementer of the theory enjoys full access to the 

implementer's variables, but cannot directly access (see or change) the user's 

variables.  An implementer gets access to the user's variables only through the 

theory.

To implement  Theory4 , we introduce an implementer's variable  s: [*X]  and 

now we define

Stack5      = (push   =   λx: X· s:= s+[x])

∧ (pop   =   s:= s [0;..#s–1])

∧ (top   =   s (#s–1))

The proof that  Stack5  implements  Stack4 , as always, is just an implication.

Stack5  ⇒ Stack4

By implementing  Stack4  we prove that it is consistent.  But it is incomplete.  

Incompleteness is a freedom for the implementer, who can trade economy against 

robustness.  If we care how this trade will be made, we should strengthen the theory.  

For example, we could add

Stack6       = Stack4

∧ (print "error"   ⇐   mkempty;  pop)

A slightly fancier imperative stack theory tells us about   mkempty  (a program to 

make the stack empty) and  isempty  (a boolean to say whether the stack is empty).  

Letting  x: X ,  the theory is

Stack7       = Stack4

∧ (∀x: X· ¬isempty′  ⇐  push x)

∧ (isempty′  ⇐  mkempty)
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The imperative stack theory we presented first,  Stack4 , can be weakened and still 

retain its stack character.  We must keep

top′=x   ⇐    push x

but we do not need the composition  push x; pop  to leave all variables unchanged.  

We do require that any natural number of pushes followed by the same number of 

pops gives back the original top.  The theory is

Stack8   =   ∃balance· (top′=x   ⇐    push x)

∧ (top′=top   ⇐   balance)

∧ (balance   =   ok ∨ ∃x· (push x;  balance;  pop))

This weaker theory allows an implementation in which popping does not restore the 

implementer's variable  s  to its pre-pushed value, but instead marks the last item as 

“garbage”.

A weak theory can be extended in ways that are excluded by a strong theory.  For 

example, we can add the names  count  (of type  nat ) and  start  (a program), as 

follows:

Stack9       = Stack8

∧ (count′ = 0   ⇐   start)

∧ (∀x: X· count′ = count+1   ⇐   push x)

∧ (count′ = count+1   ⇐   pop)

so that  count  counts the number of pushes and pops.  From a software engineering 

point of view, the weakest theory is best.

7  Functional Tree

Here is a strong theory that is good for mathematicians who want to study trees.

Tree0   =  λX· emptree: tree

∧ graft: tree→X→tree→tree

∧ (∀T· emptree, graft T X T: T   ⇒   tree: T)

∧ (∀t, u: tree· ∀x: X· graft t x u + emptree)
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∧ (∀t, u, v, w: tree· ∀x, y: X· 

  graft t x u = graft v y w  =  t=v ∧ x=y ∧ u=w)

∧ (∀t, u: tree· ∀x: X· left (graft t x u) = t)

∧ (∀t, u: tree· ∀x: X· root (graft t x u) = x)

∧ (∀t, u: tree· ∀x: X· right (graft t x u) = u)

For programming purposes, a simpler, weaker theory is sufficient.  As with stacks, 

we don't really need to be given an empty tree.  As long as we are given some tree, 

we can build a tree with a distinguished root that serves the same purpose.  And we 

probably don't need tree induction.

Tree1   =  λX· tree + null

∧ (∀t, u: tree· ∀x: X· graft t x u: tree)

∧ (∀t, u: tree· ∀x: X· left (graft t x u) = t)

∧ (∀t, u: tree· ∀x: X· root (graft t x u) = x)

∧ (∀t, u: tree· ∀x: X· right (graft t x u) = u)

If lists and recursive data definition are implemented, then we can implement a tree of 

integers by the following theory.

Tree2       =  tree  =  emptree, graft tree int tree

∧ emptree  =  [nil]

∧ (graft  =  λt: tree· λx: int· λu: tree· [t; x; u])

∧ (left  =  λt: tree· t 0)

∧ (right  =  λt: tree· t 2)

∧ (root  =  λt: tree· t 1)

Here is another implementation.

Tree3       =  tree  =  emptree, graft tree int tree

∧ emptree  =  0

∧ (graft  =  λt: tree· λx: int· λu: tree·

               "left"→t | "root"→x | "right"→u)

∧ (left  =  λt: tree· t "left")

∧ (right  =  λt: tree· t "right")

∧ (root  =  λt: tree· t "root")
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According to  Tree2 , the tree

3

2 7

5

is

[[[nil]; 2; [[nil]; 5; [nil]]]; 3; [[nil]; 7; [nil]]]

and according to  Tree3  it is

  "left" → ("left" → 0

| "root" → 2

| "right" → ("left" → 0

| "root" → 5

| "right" → 0 ) )

| "root" → 3

| "right" → ("left" → 0

| "root" → 7

| "right" → 0 )

Both  Tree2  and  Tree3  implement  Tree0 , and therefore also  Tree1 .

Tree2 ∨ Tree3  ⇒  Tree0 int  ⇒  Tree1 int

8  Imperative Tree

Imagine a tree that is infinite in all directions;  there are no leaves and no root.  You 

are standing at one node in the tree facing one of the three directions  up  (towards the 

parent of this node),  left  (towards the left child of this node), or  right  (towards the 

right child of this node).  Variable  node  (of type  X  ) tells the value of the item 

where you are, and it can be assigned a new value.  Variable  aim  tells what direction 

you are facing, and it can be assigned a new direction.  Program  go  moves you to 

the next node in the direction you are facing, and turns you facing back the way you 
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came.  For example, we might begin with

aim:= up;  go

and then look at  aim  to see where we came from.  For later use, we might then 

assign

node:= 3

The theory uses an auxiliary definition:   work  means “Do anything, wander around 

changing the values of nodes if you like, but do not  go  from this node (your 

location at the start of  work ) in this direction (the value of variable  aim  at the 

start of  work ).  End where you started, facing the way you were facing at the start.”.

Tree4  =  ∃work·

((aim=up) = (aim′+up)   ⇐   go)

∧ (node′=node ∧ aim′=aim   ⇐   go;  work;  go)

∧ (work   = ok

∨ (∃x· node:= x)

∨ (∃a, b: up, left, right·   a=aim+b

                             ∧ (aim:=b;  go;  work;  go;  aim:= a))

∨ (work;  work))

9  Transformation

A program is a specification of computer behavior.  Sometimes (but not always) a 

program is the clearest kind of specification.  Sometimes it is the easiest kind of 

specification to write.  If we write a specification as a program, there is no work to 

implement it.

Even though a specification may already be a program, we can, if we like, 

implement it differently.  An imperative theory is presented in terms of user's 

variables and implementer's variables;  the former provide the user's interface to the 

theory;  the latter may be for implementation purposes or they may just be for 

explanatory purposes.  Perhaps the implementer's variables were chosen to make the 

specification as clear as possible, but other implementer's variables might be more 

storage-efficient, or provide faster access on average.  Since a theory user has no 

access to the implementer's variables except through the theory, an implementer is 

free to change them in any way that provides the same theory to the user.

Let the user's variables be  u , and let the implementer's variables be  v  ( u  and  

v  represent any number of variables).  Now suppose we want to replace the 
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implementer's variables by new implementer's variables  w .  We accomplish this 

transformation by means of a transformer, which is a boolean expression  D  relating  

v  and  w  such that  ∀w· ∃v· D .  Let  D′  be the same as  D  but with primes on all 

the variables.  Then each specification  S  in the theory is transformed to

∀v· D ⇒  ∃v′· D′ ∧ S

Specification  S   is in variables  u  and  v, and the transformed specification is in 

variables u and w.

Transformation is invisible to the user.  The user imagines that the 

implementer's variables are initially in state  v , and then, according to specification  

S  , they are finally in state  v ′ .  Actually, the implementer's variables will initially 

be in state  w   related to  v  by  D ;  the user will be able to suppose they are in a 

state  v  because  ∀w· ∃v· D .  The implementer's variables will change state from  

w   to  w ′  according to the transformed specification  ∀v· D ⇒  ∃v′· D′ ∧ S .  This 

says that whatever related initial state  v  the user was imagining, there is a related 

final state  v ′  for the user to imagine as the result of  S  , and so the fiction is 

maintained.  Here is a picture of it.

w′

v v′

w

D′D

S

∀v· D ⇒ ∃v′· D′ ∧ S

Implementability of  S  (in its variables  v  and  v′ ) becomes (via the transformer  D  

and  D′ ) the new specification (in the new variables  w  and  w ′ ).  This 

transformation is one form of data refinement.

10  Limited Queue

We illustrate theory transformation with the example of an imperative queue of 

limited size.  Here's the theory we start with.
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Queue0   =
   ∀x: X· (mkemptyq ⇒ isemptyq′)

∧ (isemptyq ∧ ¬isfullq ∧ join x  ⇒  front′=x ∧ ¬isemptyq′)
∧ (¬isemptyq ∧ leave  ⇒  ¬isfullq′)
∧ (¬isemptyq ∧ ¬isfullq ∧ join x  ⇒  front′=front ∧ ¬isemptyq′)
∧ (isemptyq ∧ ¬isfullq  ⇒  (join x;  leave   =   mkemptyq))

∧ (¬isemptyq ∧ ¬isfullq  ⇒  (join x;  leave   =   leave;  join x))

Let the limit be positive natural  n , and let  Q: [n*X]  and  p: nat  be implementer's 

variables.  Then here is a theory to implement  Queue0 .

Queue1      = (mkemptyq  =  p:= 0)

∧ (isemptyq  =  p=0)

∧ (isfullq  =  p=n)

∧ (join  =  λx: X· Qp:= x;  p:= p+1)

∧ (leave  =  for i:= 1;..p do Q(i–1):= Qi;  p:= p–1)

∧ (front  =  Q0)

A user of  Queue1  would be well advised to precede any use of  join  with the test  

¬isfullq , and any use of  leave  or  front  with the test  ¬isemptyq , but that's not 

our business at the moment.  A new item joins the back of the queue at position  p  

taking constant time to do so.  The front item is always found instantly at position  

0 .  Unfortunately, removing the front item from the queue takes time  p–1  to shift 

all remaining items down one index.

We want to transform the queue so that all operations are instant.  Variables  Q  

and  p  will be replaced by  R: [n*X]  and  f, b: 0,..n  with  f  indicating the current 

front of the queue and  b  its back.

Q
 

R
 f b

leave from here and shift left
join here join here

leave from here

nn 00
R

  f

join here
leave from here

n0

The idea is that  b  and  f  move cyclically around the list;  when  f  is to the left of  

b  the queue items are between them;  when  b  is to the left of  f  the queue items are 

in the outside portions.

Here is the transformer  D .
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0 ≤ p = b–f < n  ∧  Q[0;..p] = R[f;..b]

∨ 0 < p = n–f+b ≤ n  ∧  Q[0;..p] = R[(f;..n); (0;..b)]

One great thing about theory transformation is that once we have stated the 

transformer, which is the relation between the old and new variables, there is no 

further invention required;  the operations of the theory are transformed for us.  First 

we transform  mkemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ mkemptyq

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q by several omitted steps

= f′=b′
⇐ f:= 0;  b:= 0

The other great thing about theory transformation is that it never transforms 

incorrectly, even if we have an incorrect transformer!  Next we transform  

u:= isemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isemptyq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=0) ∧ p′=p ∧ Q′=Q

by several omitted steps

= f<b  ∧  f′<b′  ∧  b–f = b′–f′  ∧  R[f;..b] = R′[f′;..b′]  ∧  ¬u′
∨ f<b  ∧  f′>b′  ∧  b–f = n+b′–f′

∧ R[f;..b] = R′[(f′;..n); (0;..b′)]  ∧  ¬u′
∨ f>b  ∧  f′<b′  ∧  n+b–f = b′–f′

∧ R[(f;..n); (0;..b)] = R′[f′;..b′]  ∧  ¬u′
∨ f>b  ∧  f′>b′  ∧  b–f = b′–f′

∧ R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)]  ∧  ¬u′

Initially  R   might be in the “inside” or “outside” configuration, and finally  R ′  

might be either way, so that gives us four disjuncts.  Very suspiciously, we have  

¬u′  in every case.  That's because  f=b  is missing!  So the transformed operation is 

unimplementable.  That's the transformer's way of telling us that the new variables 

do not hold enough information to answer whether the queue is empty.  The problem 

occurs when  f=b  because that could be either an empty queue or a full queue.  A 

solution is to add a new variable  m: bool  to say whether we have the “inside” mode 

or “outside” mode.  We revise the transformer  D  as follows:
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m  ∧  0 ≤ p = b–f < n  ∧  Q[0;..p] = R[f;..b]

∨ ¬m  ∧  0 < p = n–f+b ≤ n  ∧  Q[0;..p] = R[(f;..n); (0;..b)]

Now we have to retransform  mkemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ mkemptyq

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ p′=0 ∧ Q′=Q by several omitted steps

= m′  ∧  f′=b′
⇐ m:= †;  f:= 0;  b:= 0

Now we hope for more success transforming  u:= isemptyq .

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isemptyq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=0) ∧ p′=p ∧ Q′=Q

by several omitted steps

= m  ∧  f<b  ∧  m′  ∧  f′<b′  ∧  b–f = b′–f′
∧ R[f;..b] = R′[f′;..b′]  ∧  ¬u′

∨ m  ∧  f<b  ∧  ¬m′  ∧  f′>b′  ∧  b–f = n+b′–f′
∧ R[f;..b] = R′[(f′;..n); (0;..b′)]  ∧  ¬u′

∨ ¬m  ∧  f>b  ∧  m′  ∧  f′<b′  ∧  n+b–f = b′–f′
∧ R[(f;..n); (0;..b)] = R′[f′;..b′]  ∧  ¬u′

∨ ¬m  ∧  f>b  ∧  ¬m′  ∧  f′>b′  ∧  b–f = b′–f′
∧ R[(f;..n); (0;..b)] = R′[(f′;..n); (0;..b′)]  ∧  ¬u′

∨ m  ∧  f=b  ∧  m′  ∧  f′=b′  ∧  u′
∨ ¬m ∧  f=b  ∧  ¬m′  ∧  f′=b′

∧ R[(f;..n); (0;..b)]=R′[(f′;..n); (0;..b′)]  ∧  ¬u′
⇐ u′ = (m ∧ f=b) ∧ f′=f ∧ b′=b ∧ R′=R

= u:=  m ∧ f=b

The transformed operation offered us the opportunity to rotate the queue within  R  , 

but we declined to do so.  Each of the remaining transformations offers the same 

useless opportunity, and we decline each time.

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= isfullq)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=(p=n) ∧ p′=p ∧ Q′=Q

by several omitted steps

⇐ u:=  ¬m ∧ f=b
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∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ join x

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[0;..p]+x+Q[p+1;..n] ∧ p′=p+1

by several omitted steps

⇐ Rb:= x;  if b+1=n then (b:= 0;  m:= ƒ) else b:= b+1

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ leave

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ Q′=Q[(1;..p); (p;..n)] ∧ p′=p–1

by several omitted steps

⇐ if f+1=n then (f:= 0;  m:= †) else f:= f+1

∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ (u:= front)

= ∀Q, p· D ⇒ ∃Q′, p′· D′ ∧ u′=Q0 ∧ p′=p ∧ Q′=Q

by several omitted steps

⇐ u:=  R f

Queue2    = (mkemptyq  =  m:= †;  f:= 0;  b:= 0)

∧ (isemptyq  =  m ∧ f=b)

∧ (isfullq  =  ¬m ∧ f=b)

∧ (join  =  λx: X· Rb:= x; if b+1=n then (b:= 0; m:= ƒ)

else b:= b+1)

∧ (leave  =  if f+1=n then (f:= 0;  m:= †) else f:= f+1)

∧ (front  =  R f)

A transformation can be done by steps, as a sequence of smaller transformations.  A 

transformation can be done by parts, as a conjunction of smaller transformations.  

But we don't pursue the topic further.

11  Incompleteness

Transformation is sound in the sense that a user cannot tell that a transformation has 

been made;  that was the criterion of its design.  But it is possible to find two 

theories that behave identically from a user's view, but for which there is no 

transformer to transform one into the other.  Transformation is therefore incomplete.

An example to illustrate incompleteness comes from Gardiner and Morgan [3].  

The user's variable is  i  and the implementer's variable is  j , both of type  nat .  The 

theory is
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GM0      = (initialize   =   i′ = 0 ≤ j′ < 3)

∧ (step   =   if j>0 then (i:= i+1;  j:= j–1) else ok)

The user can look at  i  but not at  j .  The user can  initialize , which starts  i  at  0  

and starts  j  at any of  3 values.  The user can then repeatedly  step  and observe that  

i  increases  0  or  1  or  2  times and then stops increasing, which effectively tells 

the user what value  j  started with.

If this were a practical problem, we would notice that  initialize  can be refined, 

resolving the nondeterminism.  For example,

initialize   ⇐   i:= 0;  j:= 0

We could then transform  initialize  and  step  to get rid of  j , replacing it with 

nothing.  The transformer is  j=0 .  It transforms the implementation of  initialize  as 

follows:

∀j· j=0 ⇒ ∃j′· j′=0 ∧ i′=j′=0

= i:= 0

And it transforms  step  as follows:

∀j· j=0 ⇒ ∃j′· j′=0  ∧  step

= ∀j· j=0 ⇒  ∃j′· j′=0  ∧  if j>0 then (i:= i+1.  j:= j–1) else ok

= ok

The very simple transformed theory

GM1      = (initialize   =   i:= 0)

∧ (step   =   ok)

cannot be distinguished from the original by the user.  If this were a practical 

problem, we would be done.  But the theoretical problem is to replace  j  with 

boolean variable  b  without resolving the nondeterminism, producing the theory

GM2      = (initialize   =   i′=0)

∧ (step   =   if b ∧ i<2 then i′ = i+1 else ok)
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Now  initialize  starts  b  either at  † , meaning that  i  will be increased, or at  ƒ , 

meaning that  i  will not be increased.  Each use of  step  tests  b  to see if we might 

increase  i , and  i<2  to ensure that  i  remains below  3 .  If  i  is increased,  b  is 

again assigned either of its two values.  The user will see  i  start at  0  and increase  

0  or  1  or  2  times and then stop increasing, exactly as in the original specification  

GM0 .  The nondeterminism is maintained.  But there is no transformer in variables  

i ,  j , and  b  to do the job;  transformation is an incomplete method.

Where there's a will, there's a way.  The criterion for being a transformer  D  is  

∀new· ∃old· D .  This criterion is sufficient to guarantee that when the  old  variables 

are replaced by the  new , the result will be correct, but it is not always necessary for 

correctness.  First, we rewrite  GM0  by introducing variable  k  to stand for the 

nondeterministically chosen initial value of  j .

GM0      =      ∃k: 0,..3· (initialize   =   i:= 0;  j:= k)

∧ (step   =   if j>0 then (i:= i+1;  j:= j–1) else ok)

Next we replace  j  with  b  using  i+j=k ∧ b=(j>0) .  This does not meet the 

criterion for being a transformer, but it is still safe because  i+j=k  is established by  

initialize  and maintained invariant by  step , and  b=(j>0)  is a transformer (although 

it produces an unimplementable result).  Now we transform.

∀j· i+j=k ∧ b=(j>0)  ⇒  ∃j′· i′+j′=k ∧ b′=(j′>0) ∧ initialize

= ∀j· i+j=k ∧ b=(j>0)  ⇒  ∃j′· i′+j′=k ∧ b′=(j′>0) ∧ i′=0 ∧ j′=k

= b=(i<k)  ⇒  (i:= 0;  b:= i<k)

∀j· i+j=k ∧ b=(j>0)  ⇒  ∃j′ i′+j′=k ∧ b′=(j′>0) ∧ step

= ∀j· i+j=k ∧ b=(j>0)

     ⇒ ∃j′· i′+j′=k ∧ b′=(j′>0)

     ∧ if j>0 then i′=i+1 ∧ j′=j–1 else i′=i ∧ j′=j

= b=(i<k)  ⇒   b′=(i′<k) ∧ if b then i′=i+1 else i′=i

= b=(i<k)  ⇒   if b ∧ i<2 then (i:=i+1;  b:= i<k) else ok

The resulting theory is
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GM3  =  ∃k: 0,..3·

(initialize   =   b=(i<k)  ⇒  (i:= 0;  b:= i<k))

∧ (step   = b=(i<k)

               ⇒ if b ∧ i<2 then (i:=i+1;  b:= i<k) else ok)

Variable  j  has disappeared, and variable  b  has appeared, as desired.  But we also 

have  k , which we added just to help make the transformation, and now it is no 

longer wanted.  Eliminating it produces  GM2  as desired.

The incompleteness of transformation, like the incompleteness of first-order 

logic, is demonstrated with an example carefully crafted to show the incompleteness, 

not one that would ever arise in practice.  We should not switch to a more 

complicated rule, or combination of rules, that are complete.  We should stay with 

the simple rule that is adequate for all transformations that will ever arise in any 

problem other than a demonstration of theoretical incompleteness.  And even then, all 

we need is to soften the criterion for being a transformer.  For further reading, see [7].

12  Conclusion

A theory can be presented as a boolean expression.  Theories can then be combined 

by ordinary conjunction, and by other boolean connectives, and compared for strength 

by ordinary implication.  Strong theories serve mathematicians who want to prove a 

lot, but weak theories are better for software engineers who need to implement them.  

This kind of theory presentation is both a simplification and a generalization of the 

early work.  By reducing theories to boolean expressions we understand them in the 

simplest possible way, and we allow all combinations that make logical sense.  

Theory refinement is just implication.  Implementation can also be expressed as a 

theory in a particular form.  Then implementation is just a refinement, and the proof 

of correctness of the implementation is just a boolean implication.  This kind of 

theory presentation, as a single boolean expression, works for both the functional 

style and imperative (state-changing) style of theory.

Theory transformation is a safe and automatic way to reimplement a theory, once 

the transformer has been written.  Although the method of transformation is 

incomplete in a theoretical sense, it is complete enough for all practical purposes.
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