Acta Informatica 25, 1-14 (1988) I 5, [

© Springer-Verlag 1988

Termination Conventions and Comparative Semantics

Eric C.R. Hehner and Andrew J. Malton

University of Toronto, CSRI, Sandford Fleming Building, 10 King’s College Road, Teronto,
Canada, M5S 1A4

Summary. The notion of termination is examined, first for its physical observ-
ability, then for its part in six semantic formalisms, with emphasis on predica-
tive semantics.

Observing Termination

Imagine there is a computer in front of you right now. Perhaps it has a screen
and keyboard, as is common. You can press the keys, and watch the patterns
on the screen. Unfortunately, this computer was built and programmed by
Tatooinians, whose language you do not know. The symbols on the keys are
meaningless to you; the patterns on the screen are undecipherable. Fortunately,
no-one is asking you what is being computed, or what the computation means.
You are being asked a simpler question: When has the computation terminated ?
If you will simply report when the machine is finished, someone else will then
interpret the results.

How do you know when termination occurs? If nothing has happened for
five minutes, can you report termination? No; perhaps the machine is computing
Ackermann (6,6), and still has a century to go. It is obvious that nontermination,
or infinite looping, is not an observable event; without knowing the program,
you can only guess that a computation is stuck in a loop. The purpose of
this thought-experiment is to convince you that termination is also not an
observable event.

How do you recognize termination on your own computer, programmed
by someone who speaks your language? Probably you look for the word
“done”, or something similar, printed as the dying act. Or perhaps you look
for a prompt from the operating system, following termination. It is possible,
though not probable, that your computer has broken in mid-computation, and
is now behaving erratically; it just printed the letters “done” (or the prompt)
by chance as it malfunctions. Or perhaps the program was written by a joker,
who thinks it funny to print “done” (or the prompt) in the middle of the compu-




2 E.C.R. Hehner and A.J. Malton

tation, followed in a minute by “wait, there’s more”. You cannot be certain
when a computation has finished even on your own machine, although the
usual indicators are very reliable.

Predicative Semantics

A predicative formalism is a formalism for specifying and describing computa-
tions, including the semantics of programs, as predicates. One is invited to decide
what observable quantities are of interest, and to express specifications as predi-
cates having these quantities as free variables. A computation satisfies a specifica-
tion if it instantiates the free variables in a way that satisfies the predicate.

A reasonable choice of “observable quantities of interest” is the communica-
tion sequence, or sequences, to and from a computer. In many computer systems
and programming languages, there is something that indicates termination of
a communication sequence. (In UNIX it is control-D; in Pascal it is the eof
function.) But at a basic semantic level, this end-of-file indication is just another
communication. It is only by agreement that we give it the special meaning
“don’t wait for more”. We may decide to enshrine this meaning in a program-
ming language’s semantics; there are some advantages in doing so. Similarly,
we can design into a language a communication with the meaning “please enter
input now”, and many other equally useful messages. Or instead, we may decide
that the programmers, not the language designers, give meaning to the communi-
cations. We leave it to them to decide upon whether and how to prompt, to
decide whether and how to say “this message is the last”. The benefit is a
simpler semantics.

A recent paper [3] presented and used a predicative formalism in which
the observable quantities of interest are taken to be the initial values x, y, ...
and final values ¥, J, ... of some variables. Pointedly, termination and nontermin-
ation are not taken to be observable. It is left to the programmers to decide
upon their termination convention. We assume knowledge of [3], or of its fore-
runner [2], and we now discuss the possible termination conventions.

Stability Conventions

A termination convention, or more generally a stability convention, is a predicate
a(v) of the program variables (or state) v that is not identically true:

—Vv-o.

A state satisfying o is called “stable”, and a state not satisfying o is called
“unstable”. (We disallow the trivial predicate “true” as a stability convention
to avoid having to say “non-trivial stability convention” in the theorems and
comparative semantics that follow.) Here are two examples.

Convention u (unstable state). Let us call one of the states u. Then, under this
convention, we define ¢ =(v=u). In words, u is taken to be an unstable state,




Termination Conventions and Comparative Semantics 3

and all other states are considered stable. (The symbol L is sometimes used
for a fictitious state reached after nontermination. In contrast, we intend the
unstable state u to be an actual machine state; it is the state during a computa-
tion, after its start and before its termination. We are not considering u to
be the bottom of a lattice.)

Convention b (busy bit). Let us call one boolean variable b. Then, under this
convention, we define 0 =—1b. We might implement b as a light on the console.
Before the computation has started, it is off (false); during the computation,
it is on (true); when it goes off (false), the state is again stable and the computation
has terminated.

From a coding viewpoint, convention u is the most economical; it wastes only
one state to indicate instability, leaving all others to indicate results. Convention
b makes half the states unstable; still, it wastes only one bit. From a recognition
viewpoint, convention b is the most practical; we need to look at only one
bit, not all the bits, to determine stability.

Respectfulness

In [3] we defined the “determined” operator V for any specification S(s, )
as

VS=—Vvo.-S.

V'S is true of exactly those inputs o for which we are interested in the output
v. We also considered a special case of the invariant construct

(invP-S)=(PAVS=SAP)

where P is any predicate of the program state. In these terms, we now define
“respectfulness”.
A specification S is said to respect convention ¢ iff

Vo-Vo-S=(invo-S).
The following six theorems afford us some insight into respectfulness.

Theorem 0. S respects o iff
Yo-VS=0A(Vi-S=7).

For a determined specification, the intent is that the initial state should be
stable, and any final state satisfying S should be stable. During the computation,
the machine is in an unstable state. Suppose for a moment that we can observe
the state during a computation. Under convention u, since there is only one
unstable state, we cannot see how the computation is progressing — only that
it is. Under convention b, we may be able to watch the sequence of unstable
states, and see how the machine works. But our specifications do not speak
of intermediate, unstable states; in that sense, they are not “of interest”.




4 E.C.R. Hehner and A.J. Malton

Theorem 1. Specification S(v, 6) respects convention u iff it is both strict

S(u, u)
and explosive

Y -(S(@, u)=Y 6- S5, ).

This means that from initial state u, final state u is possible; and if, from some
initial state, final state u is possible, then, from that initial state, every final
state is possible.

Theorem 2. Specification S respects convention b iff it is both strict

Vo-36-b=SAb
and explosive :
Vo-(30-SAb)=V5-S.

Again, “strictness” means that instability may lead to instability, and “explosive-
ness” means that if S allows the final state to be unstable, then it allows every
final state.

Theorem 3. Let S be an arbitrary specification. Then inv ¢-S respects convention
a.

All our programming connectives that were defined in [3] have the property
that if their parts respect some convention, then the whole does.

Theorem 4. If P and Q respect a, then so do (P-Q), (P;Q), (P or Q) and (if b
then P else Q). If, assuming P respects o, S(P) does also, then loop P: S(P) respects
o.

It is especially nice that, under any stability convention, the difference be-
tween relational product and composition disappears.

Theorem 5. If Q respects some convention g, then

P, Q=P-Q.

The Need for a Stability Convention

We must be able to decide when a computation is finished. Since termination
is not an observable event, it is necessary to have and to respect a stability
convention. But it is really of no interest which convention we choose. We
would like to be able to write a simple specification that refers only to the
desired results, not to the arbitrary convention. As a trivial example, we would
like to write

26— %441
to say that x is increased by 1. Unfortunately, this specification does not respect

any convention. To obtain a respectful specification, we apply Theorem 3. Under
convention b we obtain

—b=x=x+1A"1b




Termination Conventions and Comparative Semantics 5

and under convention u we obtain

vFu=x=x+1

assuming that the consequent somehow implies ¢ = u. Even the simple specifica-
tion ok =(#=10) does not respect any convention; we must instead write either
(mb=6="0) or (0= u=6=1). All specifications become a little more complicated,
with extra detail that is of no programming interest.

A stability convention is also necessary for the implementation of semi-colon:
to implement P; Q it must be possible to recognize termination of P’s execution
in order to start Q’s execution. The usual convention used for that purpose
involves part of the state (the “program counter”) that programmers would
prefer not to think about. No “higher-level” version of this implementation
detail (such as convention u or convention b) is an improvement. Accordingly,
semi-colon was defined in [3]

k> 0= (UE=-F:0)

with an antecedent saying only that there can be a stability convention, but
not specifying any particular one. This is the strongest predicate that can be
implemented as sequential execution (for proof, see [3]).

Although a stability convention is of no interest to a programmer (in fact,
it is an impediment), it allows us to translate among various semantic formalisms,
and compare them. That is our purpose in the remainder of this paper. In
these translations and comparisons, we shall refer to the predicative semantic
formalism as PS.

Dijkstra’s wp

According to Dijkstra’s “weakest precondition” formalism [1], a program S
is defined by a predicate transformer wp(S, R) that maps any postcondition
R to the corresponding necessary and sufficient precondition P. Its interpretation
is that, starting in a state satisfying P, execution of S will terminate in a state
satisfying R.

Suppose we have a PS specification S and a postcondition R, and we want
to find precondition wp(S, R). First, extend the state space with at least one
unstable state to provide a stability convention ¢ (defined to be true of exactly
the unextended state space). We assume that S respects ¢ (if not, replace S
with (inv ¢-S) in the following). We also assume (Vv-R=>0) (if not, replace R
with R A ¢ in the following). Now

wp(S, R)=(V§-S=R).

(The accent on wp signifies only that the result is a predicate in d; it may
be deleted.) The result of this translation is a precondition P such that (Y v- P=>0).
The stability convention has now served its purpose; if desired, it can be thrown
away by taking o to be true, thus eliminating the unstable states.

For the reverse translation we are given wp(S, R) for arbitrary R, and we




6 E.C.R. Hehner and A.J. Malton

want to express S as a predicate. It is
S=invo-T1wp(S, %)

(For the calculation of wp, the ¢ are constants; the variables are unaccented.
In the resulting precondition, place * accents on the unaccented variables.) Again,
we can throw away o by letting it be true.

With the stability convention, translations between PS and wp do not lose
information; they are reversible. Translation between PS and wp can also be
made directly without introducing a stability convention. The translation is

Wwp(S, R)=VS A(Y6-S=R)
S=—1wp(S, 0Fv).

But in one case (called havoe in the catalogue of semantics, later) this is not
a reversible translation.

Jones’s VDM

In Jones’s VDM (Vienna Development Method) formalism [4], a specification
is a pair (P, R) in which P is a precondition (predicate on the initial state)
and R is a relation (predicate on the initial and final states). Its interpretation
is that, starting in a state » satisfying P, execution will terminate in a state
¢ such that the pair (v, ) satisfies R.

To translate, first extend the state space with at least one unstable state
to provide a stability convention ¢. Then, given PS specification S respecting

o, we obtain VDM precondition P and relation R as follows:
PSS RS

In VDM, two specifications are considered equivalent if their preconditions
are equivalent and their relations agree whenever ¢ satisfies the precondition.
So we could choose any relation R such that

(7S A S)=>R=>(V'S=5).

We shall consistently choose R to be as weak as possible.
In the reverse direction, given VDM specification (P, R) respecting g, i.c.
such that (Vv-P=>¢) and (Vv:V$- P A R=>06), obtain PS specification S as

S=(P=R).

Once again, with the stability convention the translations do not lose infor-
mation. The translation can be made without any stability convention, but
then there is the same single case in which the translation is not reversible.
Translation between VDM and wp is reversible with or without a stability



Termination Conventions and Comparative Semantics 7

convention. Given wp,
P= wp(S, true), R=—1wp(S, 5=v).
The other way, given P and R,
Wp(S, Q)=P A (Vi-R=0Q).

Partial Relation PR

In this formalism, a specification consists of a (possibly partial) relation R, with
the following interpretation: if (v, ¥) satisfies R, then execution starting at o
must terminate, and ¢ is a possible final state. This formalism has been proposed
by Robison [6] and independently by B. von Stengel (private communication).

An implementable PS specification S can be translated to PR by extending
the state space as before, and ensuring that S is respectful. Then

R=VZSNS:
The reverse translation is
S=(36-R)=R).

Parnas’s LD and SS

In Parnas’s LD (Limited Domain) formalism [5], as in Jones’s VDM, a specifica-
tion is a pair (C, R). C is a predicate on the initial state called the “competence”,
and R is a relation (predicate on the initial and final states). Its interpretation
is a little different than that of VDM: if execution starts in a state ¢ satisfying
C, it will terminate in a state ¥ such that the pair (v, v) satisfies R; if it starts
in a state © not satisfying C, it will either terminate in a state ¢ such that
the pair (v, ¥) satisfies R or it will fail to terminate. Unlike VDM, specifications
that differ only when 0 lies outside the competence set are not considered equiva-
lent.

The translation between PS and LD is similar to the translation between
PS and VDM for specifications that respect a stability convention. LD differs
from VDM in its ability to be disrespectful: an LD specification can say that,
for some initial state, nontermination and termination in a limited set of final
states are acceptable, but termination in any other final state is unacceptable.

C=(V5-S=6), R=SAé
S=(Cvdé=R).
Parnas has also considered a relational semantics that he has called “stan-

dard semantics™ SS. It is similar to LD but the competence is determinable
from the relation as

C=3Fv-R




8 E.C.R. Hehner and A.J. Malton

and so we can dispense with it. SS can be seen as a variation of PR. In PR,
if for ¢ there is no ¥ such that (o, ) satisfies R, then execution starting at v
is arbitrary; in SS, nontermination is mandatory.

R=if Vo-(V6-S=3J) v (Vi-S=—16)
then SA G
else inexpressible
S=(6=306-R)A((F5-R)=R).

Catalogue of Semantics

We now present a dozen specifications and connectives, each in the six formal-
isms we have just described. Those that are basic (not composed from others)
are shown both with and without a stability convention. The reader should
compare them for simplicity and ease of expression. Our comparative comments
follow.

specification called abort, chaos or disaster: arbitrary behavior

with o without o
PS true true
wp(S, R) false false
VDM false, true false, true
PR false false
LD false, true false, true

SS inexpressible inexpressible

specification called havoc or chance: terminating but otherwise arbitrary behav-
ior

with o without o
PS 0=0 inexpressible
wp(S, R) Yv-o=R Vov-R
VDM 0,0=>0 true, true
PR GAG true
LD G, 0=0 true, true
SS inexpressible true

specification called skip, ok or continue

with without
PS o=10="0 D=0
wp(S, R) o AR R
VDM 0 r—=0=0 true, 6="0
PR CAD=D =10
LD 0,0=0="0 true, =1

SS inexpressible =10




Termination Conventions and Comparative Semantics

specification called miracle

with o
PS —@
wp(S, R) o
VDM G, 16
PR inexpressible
LD 07 =ml0;
SS inexpressible

assignment x:=e in two variables x, y, assuming e

with o
PS O=X=E¢AY=PAG
wp(S, R) o AR[x:e]
VDM 0,0=>X=CeAY=PAG
PR CAX=EANY=PAGC
LD 6,0=>X=CeAYy=) A0
SS inexpressible

without o

false

true

true, false
inexpressible
true, false
inexpressible

is evaluable

without ¢

)6:(}/\}":}‘;
R[x: €]

true, X=¢Ay=y

)é:é,\)'):)‘)

true, Xx=eAy=y
X=eAy=y

sequential composition: satisfy first P then Q

i PS VP=Po0

wp(S, R) wp(P, wp(Q, R))
{ VDM B A(V5-Rp=E,), RpoR,
? PR (Yo-P@, v)=36-Q(v, ) A PoQ
LD Co A (V32 R—C )RR,
SS if Vo-(36-PoQ)=(Vv- P, v)=35-0(v, 1)
then P-Q

else inexpressible

deterministic choice: if b is initially true then satisfy P else satisfy Q

PS bAPv—TbAQ
| wp(S, R) b Awp(P, R)v—1b Awp(Q, R)
j} VDM bABvbAR, bAR,vTIbAR,
| PR bAPv—bAQ
| LD ID:/\CP\/'—[‘B/\CQ,B/\RPVﬁb‘/\RQ
' SS bAPv—IbAQ

nondeterministic choice: satisfy either P or Q

PS PvQ

wp(S,R)  wp(P, R)AWp(Q, R)

VDM BABy, BbAB=RpVvR,

PR 3@5-PYA(BB-Q)A(PV Q)

LD CPAC‘Q,RPVRQ

SS ifVo-(30-P)=(370-Q)
then Pv Q

else inexpressible




10 E.C.R. Hehner and A.J. Malton

joint satisfaction: satisfy both P and Q

PS PAQ

wp(S,R)  wp(P, R) vwp(Q, R)

VDM B v Ry, RpARg

PR ifVo-@6-PAQ)v(T135-P)v(T13E-Q)

then (30:P A Q)=P A Q)
A(—36-P)v(—35-Q)=P Vv O)
else inexpressible

LD CpV Co, R ARy
SS ifVo-36-PAQ)v(1136-P)A(—35-0)
then PA Q

else inexpressible

ordering: P satisfied if Q satisfied

PS P<=0Q

wp(S, R) VR-wp(P, R)=wp(Q, R)

VDM BV (R —K,)

PR 36-P)=3v-Q)A(P<=0)
LD CP=>CQ/\(RP¢:RQ)

SS (@6-P)=(3¢-Q) A (P<=0)

variable declaration: introduce fresh local variable x into P

PS 3%-3%-P

wp(S, R) vV x-wp(P, R)

VDM Vx-PB,3%-3%-Rp

PR 3%-3%-P

IEID) Vx-Cp,I%-3%-Rp

SS ifVo-Vo-(3A%-3%-P)=(Vx-3I%-P)
thendx-dx-P

else inexpressible

recursion: to satisfy loop P: S(P), satisfy S(loop P: S(P))

PS Vi-Si(true)

wp(S, R) 3 i-\yp(Si(abort), R)
VDM = PS"(abort)a Vi RS"(ahort)
PR not easily expressible
LD not easily expressible
SS inexpressible.

Comparative Comments

It is questionable whether a semantic formalism that talks only about the initial
input state and the final output state, without any interactive input or output
during the computation, can be considered adequate. But all the formalisms
considered here are of that sort, so it is not a point of comparison.




Termination Conventions and Comparative Semantics 11

All of the formalisms provide a way of saying, for each input state, “specifica-
tion P requires termination”. They are:

PS VP

wp wp (P, true)
VDM B

PR 1¢-P

LD €

SS d0-P.

The negation means, of course, “specification P does not require termination”.
Only two of the formalisms provide a way of saying “specification P requires
nontermination”. They are:

LD =G AP
SS =10

In PS, VP says that P is determined; to know that a computation satisfies
a determined specification, one must observe its final state (so it must have
one). But to know that a computation satisfies an undetermined specification,
ie. when V4-P, it is not necessary to observe its final state (so it does not
need to have one).

One of the formalisms, wp, is not based on a relation. This makes it awkward
to state that the output is to be related to the input. To say that x is to be
increased by 1, we may write something like

wp(S, x=X +1)

accompanied by words that say X is the initial value of x. But formally this
allows the unintended solution

X:=3;%:=4

for S. To say what is intended, we must be able to distinguish, in the formalism,
between initial and final values.

VDM and PS are very close, as seen by the simplicity of the translation.
In practice, it often makes sense to think of the precondition separately from
the relation, as in VDM. One writes them down with a comma between, as
in VDM, or with an implication sign, as in PS. VDM offers us a freedom
in stating the relation, and we chose to make it as weak as possible. Consequently,

Vo-VR=P.

This means that the precondition is entirely superfluous whenever VR is true.
It gives us further information only for those inputs where V'R is false. If, for
some input, all outputs are acceptable, the precondition tells us whether termina-
tion is required. Its only service is to distinguish, for each input state, chaos
from havoc. In judging the value of this service against its cost, keep in mind
the fact that termination, by itself, is not observable.




12 E.C.R. Hehner and A.J. Malton

LD differs from VDM in its ability to be disrespectful: an LD specification
can say that, for some initial state, nontermination and termination in a limited
set of final states are acceptable, but termination in any other final state is
unacceptable. Such a specification is very easy to implement: ignore the final
states and deliver a nonterminating loop. Hence the ability to be disrespectful
is of no practical value in programming. PS, wp, VDM, and PR all hold that
(without communications or intermediate results) infinite loops are useless, and
there is no point in being particular about possible final states while allowing
an infinite loop. One may take the position that LD can describe more mecha-
nisms than PS, wp, VDM, or PR: it can describe those that can nondeterministi-
cally either terminate in a particular final state or not terminate. Or, one may
instead take the position that mechanisms are deterministic, and that nondeter-
minism is a property of specifications. In that case, LD is no more descriptive
than the other formalisms.

To a specifier, the most important connective is probably joint satisfaction.
It is very common to specify by parts, stating properties that must be jointly
satisfied. A specifier will therefore appreciate the formalism that makes joint
satisfaction simplest.

To a programmer, the most important connective is undoubtedly the order-
ing, because that is the criterion for correctness of a program. Indeed, the entire
programming process is to transform a specification, little by little, to a program,
and at each stage to ensure that the new is properly related to the old by
the ordering. A programmer will therefore appreciate the formalism that makes
the ordering simplest.

Of all these formalisms, PR fits the class of computations best — in fact,
perfectly. All implementable specifications are expressible, and all unimplement-
able specifications are not. That was its design criterion. To achieve this, PR
significantly complicates the expression of its connectives, particularly joint satis-
faction.

Alone among the formalisms, PS can be criticized for the fact that its semi-
colon is not always associative. The counter-example creates, using semi-colon,
what would be havoc in another formalism. For example, in one integer variable
X,

(X=+x; Xx+x); x=0=true
bG= 0 (B6 ek e — 0) =26 =10

Our intuition that semi-colon should be associative is simply this: executing
first P and then (Q; R) should be the same as executing first (P; Q) and then
R. This makes sense when execution of P and (P; Q) terminate. But if P’s execu-
tion fails to terminate, what does “and then (Q; R)” mean? If (P; Q)’s execution
fails to terminate, what does “and then R” mean? It is a theorem of PS that
semi-colon is associative under all circumstances called for by intuition:

VP AV(P; Q)=(P;(Q; R)=(P; Q); R).
In fact, the stronger theorem

V(P; Q)=VPA(P;(Q; R)=(P; Q); R)
holds.




Termination Conventions and Comparative Semantics 13
More Power

We now present one more semantic formalism, called PF (Powerful Formalism).
As in five of the formalisms presented so far, the heart of PF is a relation
between input ¢ and output ¢. Like wp, VDM and LD, it has further information
to impart. In PF a specification is a sextuple (Wg, wlg, wp, wlp, R, §t) in which
the first four components are predicates on the initial state, R is the relation,
and §$t is a predicate on the final state. These components are to be interpreted
as follows.

wg: true of an initial state from which the computation is required to progress,
false of an initial state in which the computation is allowed to get stuck.

wlg: true of an initial state from which the computation is allowed to progress,
false of an initial state in which the computation is required to get stuck.

wp: true of an initial state for which the computation is required to terminate,
false of an initial state for which the computation is allowed to run forever.

wlp: true of an initial state for which the computation is allowed to terminate,
false of an initial state for which the computation is required to run forever.

R:  this relation describes the allowed transitions from initial to final state.

7

St: true of a final state iff termination is successful.

Here is a small sample of basic specifications in PF

chaos =false, true, false, true, true, false
havoc =true, true, true, true, true, false
random=true, true, true, true, true, true
break =false, false, false, false, false, false
miracle =true, true, true, true, false, true
magic =false, true, false, true, false, true

ok =true, true, true, true, v=70, true
skip  =false, true, true, true, ¢=0, true
spin  =true, true, false, false, =1, false

In this formalism, we are able to express not only chaos and havoc, but random
and break as well, and we can distinguish ok from skip. An advocate of PF
might criticize all weaker formalisms for being unable to make these distinctions.
One might well ask if random and break are useful for any purpose; the answer
is that they are just as useful as havoc. One might be forgiven for wondering
how we are to observe “progress” and “success”; the answer is similar to that
for “termination”.

Is PF powerful enough? We gave it components that sound almost reason-
able; properties like them have all been seriously discussed in the literature.
We were tempted to give it a few more components, such as “strangeness”
and “charm”, to make our point more obvious. If we wish, each of these proper-
ties can be observed indirectly via a convention, which is an interpretation
of those things that are directly observable. But what is their purpose?




14 E.C.R. Hehner and A.J. Malton

We have kept PS simple. Those who are uncomfortable without an explicit
termination indicator are invited to write their programs and other specifications
using their favorite termination convention. Then the initial states for which
the computation is required to terminate are those for which (V&-S=>4), ie.
for which the specification implies termination. PS provides the ability to express
any convention, but it has none built in.

Conclusion

In all practical circumstances, we can and do observe termination: by means
of a termination convention. This is so standard that it may be difficult to
realize we are observing a convention, and not termination itself.

We have said that “termination” does not have a physical meaning. We
now point out that it does not always have a logical meaning, either. For any
semantic formalism and any proof theory, there is a program P such that “P
terminates” can neither be proved, nor disproved. There is a model in which
it is true, and another in which it is false. For each such program P, the proof
theory can be enriched and the model theory constrained to make “P termi-
nates” mean whichever we prefer: true or false. To those who have it firmly
fixed in their heads that “termination” means something, this will seem paradoxi-
cal.

The simplest of the formalisms, having the properties most convenient for
both specifiers and programmers, is PS without a stability convention. Its one
“limitation” is its inability to distinguish between chaos and havec. But no
physical experiment can distinguish between them, either. The distinction is
a creation of the more complex formalisms.

Acknowledgement. We thank CIliff Jones and an anonymous referee for helpful suggestions.

References

1. E'W. Dijkstra: A Discipline of Programming. Englewood Cliffs, N.J.: Prentice-Hall 1976

2. E.C.R. Hehner: Predicative Programming. Commun. ACM 27, 134-151 (1984)

3. E.C.R. Hehner, L.E. Gupta, A.J. Malton: Predicative Methodology. Acta Inf. 23, 487505 (1986)

4. C.B. Jones: Systematic Software Development using VDM. London: Prentice-Hall Int. 1986

5. D.L. Parnas: A generalized control structure and its formal definition. C. ACM 26, 572-581 (1983)

6. W.A. Robison: A Deterministic Trace Semantics for Communicating Sequential Processes. M.A.Sc.
Thesis, University of Toronto, 1986

Received October 2, 1986/July 7, 1987




