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Abstract.  It is popularly believed that Cantor's diagonal argument proves 
that there are more reals than integers.  In fact, it proves only that there is 
no onto function from the integers to the reals;  by itself it says nothing 
about the sizes of sets.  Set size measurement and comparison, like all 
mathematics, should be chosen to fit the needs of an application domain.  
Cantor's countability relation is not the most useful way to compare set 
sizes in all currently known application domains.
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Introduction

We can count the elements of a finite set, and the natural number we get is called its size.  Comparing 
the sizes of two finite sets just means comparing two natural numbers.  For infinite sets, sizes are not so 
easily found and compared.  The foundational work on measuring and comparing the sizes of infinite 
sets is by Cantor [0], and that is where we begin.

Cantor and the Uncountable

Cantor's “diagonal argument” is supposed to show that there are more real numbers than integer 
numbers.  We will be content with reals  r  in the range  0 ≤ r ≤ 1 , which we will call the “small” real 
numbers, and integers  i  in the range  0 ≤ i , commonly called the “natural” numbers.  The argument is 
presented with the aid of a picture, which motivates the name “diagonal”.

0   → . 1 4 1 5 9 2 6 5 3 5 8 ⋅⋅⋅
1   → . 1 4 2 8 5 7 1 4 2 8 5 ⋅⋅⋅
2   → . 1 0 1 0 0 1 0 0 0 1 0 ⋅⋅⋅
3   → . 6 5 3 5 9 7 6 4 8 4 2 ⋅⋅⋅
4   → . 7 6 4 3 9 6 0 6 3 4 5 ⋅⋅⋅
    ⋮

On row 0, we have a decimal point followed by an infinite sequence of decimal digits, representing a 
small real number.  On row 1, we have a decimal point followed by another infinite sequence of 
decimal digits, representing another small real number.  And so on:  for each natural we have a 
representation of a small real.  We now form an infinite sequence of digits that is not on any row, as 
follows.  First, form the diagonal sequence by taking the first digit from the first row, the second digit 
from the second row, and so on.  In our example, that's  .14159... (shown in bold).  Now form a 
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sequence of digits that differs in every position from the diagonal sequence.  We could add  1 modulo 
10  to each digit.  In our example, that's  .25260... .  This new sequence differs from the sequence on 
every row in at least one position.  We are supposed to see from this that any attempt to make a list of 
all small reals (or mapping from naturals onto small reals) fails because, from any list of small reals, we 
can construct a small real that differs from every small real on the list.  We are now supposed to 
conclude that there are more small real numbers than natural numbers.

Like most mathematical proofs, the proof just presented is informal.  In the picture we see three dots in 
several places, which means “guess what goes here”.  And the proof is written mostly in a natural 
language (English), rather than in mathematics.  Informal proofs are error-prone;  the errors are hidden 
in the imprecision and ambiguities of the words.  I'll begin with a minor flaw, and then move on to a 
more major concern.

Some small real numbers have two representations.  For example,  .1234000... = .1233999... , where 
the left side of the equation ends in an infinite string of 0s and the right side ends in an infinite string of 
9s.  So it is possible that the sequence of digits we create, which differs from all sequences in the list, 
nonetheless represents a number that is already represented in the list.  The problem can be repaired by 
banishing sequences ending in an infinite string of 9s from the list.  To prove that this repairs the 
problem requires proving that there are no other ways for a small real to have two representations, and 
that if a sequence ending in an infinite string of 0s is on the list, then the altered diagonal cannot be its 
equal ending in an infinite string of 9s.  Banishing sequences ending in an infinite string of 0s from the 
list does not work;  it is indeed possible that a sequence ending in an infinite string of 9s is on the list, 
and the diagonal is its equal ending in an infinite string of 0s.  (If we make Cantor's diagonal argument 
using binary digits, the problem cannot be repaired by banishing sequences.)  Another way to repair the 
problem is to add  2 modulo 10  to each digit of the diagonal sequence.  Now the constructed sequence 
differs from the sequence on every row in at least one position by  2 modulo 10 , so it cannot represent 
the same number as the row represents.  (If we make Cantor's diagonal argument using binary digits, 
we have to form a diagonal from pairs of bits on each row.)

Program Analogy

Here is an argument that is closely analogous to Cantor's.  First, choose a programming language;  all 
programs in this argument will be in this programming language.  As before, we have rows labeled 
with natural numbers.  On each row is a program to print an infinite sequence of digits.  We can write 
each program completely without the need for three horizontal dots, but we cannot write infinitely 
many programs.  To get rid of the vertical dots, we write a program to print an infinite sequence of 
programs.  We can certainly write a program to print out all the programs in our language;  the 
programs of a language can be generated from a grammar for the language.  But that's not what we 
want;  we want a list of all and only those programs that print an infinite sequence of digits;  we want 
those digit-printing programs whose execution neither halts nor goes into a non-printing infinite loop.  
Now comes the diagonal construction.  If we have a program  P  to print all and only the infinite-
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sequence programs  Si , then we can write a new program  D  to simulate  P , producing the  Si  
(without printing them), and in turn simulate each  Si  up to  i  digits (without printing them), and then 
print a different digit.  We thus create an infinite-sequence program that differs from all the  Si .  Now 
what should we conclude?

To argue as Cantor did, we would have to conclude that there are more infinite-sequence programs than 
natural numbers.  If the inability to list all the small reals is cause for concluding that there are more 
small reals than natural numbers, then the inability to list all the infinite-sequence programs should 
equally be cause for concluding that there are more infinite-sequence programs than natural numbers.  
Now we have the following uncomfortable situation:

The infinite-sequence programs are a subset of all programs, so
• there are not more infinite-sequence programs than programs.
We can list all programs, so
• there are not more programs than natural numbers.
We cannot list the infinite-sequence programs, so
• there are more infinite-sequence programs than natural numbers.

The first two bullet-points together contradict the last bullet-point;  a Cantor-type conclusion 
concerning the sizes of sets of programs is absurd.  The proper conclusion is simply that, in any 
programming language, there is no program to generate all and only the infinite-sequence programs in 
that same programming language.  It is not a conclusion about the sizes of sets.  Likewise in the 
original Cantor argument, the proper conclusion is not about the sizes of sets;  it is simply that there is 
no sequence of all infinite sequences.

Like the original Cantor argument, this program-analogy version is informal, and the informality may 
hide serious errors.  Two paragraphs ago, “the inability to list all the small reals” was compared to “the 
inability to list all the infinite-sequence programs”.  Cantor was not concerned with how the list of 
small reals might be generated;  he just supposed that we have such a list.  In the program analogy, we 
suppose that the list of infinite-sequence programs is generated by a program, rather than just supposing 
we have such a list, no matter how it might be generated.  This sparks a debate:  what does it mean to 
have an infinite list, with no way to generate it?  Is there any way to generate an infinite list other than 
by a program?  I prefer not to engage in that debate.  I prefer to consider informal proofs to be rough 
sketches, and to insist that proofs be finished by formalizing them.  All formal proofs, and indeed all 
mathematical expressions, can be generated by a program.

Formal Proof

A mathematical formalism consists of rules for writing formulas (expressions), and rules for saying 
which formulas are theorems.  These rules must be so precise and unambiguous that they are machine-
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checkable.  That is what makes proofs objective, not a matter of opinion.  Here is a formal proof using 
the formalism of [1].

Define Cantor's relation  ⪁  between sets  A  and  B  as
A⪁B   =   ∃f: A→B·  ∀b: B·  ∃a: A·  f a = b

The relation  ⪁  is a pre-order (reflexive and transitive).  How we pronounce a formula is not part of the 
formalism, but it may be helpful to make a suggestion.  We can pronounce  A⪁B  as “A is less countable 
than or equally as countable as B”.  The part to the right of the defining equals can be read “there is a 
function  f  from  A  to  B  such that for any element  b  of  B  there is an element  a  of  A  such that  f  
applied to  a  equals  b ”.  More briefly, it can be read “there is an onto function from  A  to  B ”.  Next, 
let  nat  be the natural numbers.  Then  nat→nat  is the set of functions from  nat  to  nat , that is, the 
set of infinite sequences of naturals.  We prove

¬(nat ⪁ nat→nat)
which says that there is no onto function from the naturals to the infinite sequences of naturals.  Here is 
the proof.   (The notation  〈m: nat· f m m + 1〉  is a function that maps natural  m  to  f m m + 1 .  ⊥  is 
false and  ⊤  is true.)

¬(nat ⪁ nat→nat) definition of  ⪁
= ¬∃f: nat→nat→nat· ∀g: nat→nat· ∃n: nat· f n = g specialize  g
⇐ ¬∃f: nat→nat→nat· ∃n: nat· f n = 〈m: nat· f m m + 1〉 function equality
= ¬∃f: nat→nat→nat· ∃n: nat· ∀p: nat· f n p = 〈m: nat· f m m + 1〉p apply function
= ¬∃f: nat→nat→nat· ∃n: nat· ∀p: nat· f n p = f p p + 1 specialize  p  to  n
⇐ ¬∃f: nat→nat→nat· ∃n: nat· f n n = f n n + 1 cancellation
= ¬∃f: nat→nat→nat· ∃n: nat· 0=1 basic arithmetic
= ¬∃f: nat→nat→nat· ∃n: nat· ⊥ idempotence (unused quantifiers)
= ¬⊥ binary law
= ⊤

The proof is formal, not a wordy argument.  It can be submitted to a proof checker, which complains 
that the step “specialize  g ” requires the function  〈m: nat· f m m + 1〉  to be of type  nat→nat .  To 
satisfy this requirement, we prove

⊤ context
= f: nat→nat→nat function inclusion
= ∀m: nat· f m: nat→nat function inclusion
= ∀m, p: nat· f m p: nat specialize  p  to  m
⇒ ∀m: nat· f m m: nat nat  construction (Peano)
⇒ ∀m: nat· f m m + 1: nat function inclusion
= 〈m: nat· f m m + 1〉 : nat→nat
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The proof checker needed to be guided to a Peano axiom, instantiated to say that if  f m m  is in  nat  
then  f m m + 1  is in  nat .  The proof is now complete and correct, with no hidden assumptions or 
errors.  It says there is no onto function from the naturals to the infinite sequences of naturals.  In other 
words, the naturals are more countable than the infinite sequences of naturals.  But it says nothing 
about the sizes of sets.  For that, we need one more ingredient.

Set Size Comparison

Here are some ways to compare the sizes of finite sets.

0 If  A  is a subset of  B , then  A  is not larger than  B .
1 If  A  is a proper subset of  B , then  A  is smaller than  B .
2 If there is an onto function from  A  to  B , then  A  is not smaller than  B .
3 If there is no onto function from  A  to  B , then  A  is smaller than  B .
4 If there is a one-to-one correspondence between  A  and  B , then they have the same size.
5 If there is a two-to-one correspondence from  A  to  B , then there are twice as many elements 

of  A  as  B .
6 If there is an ordering on the elements of  A  and  B  such that between every pair of elements 

of  A  there is an element of  B , then  B  is at least as large as  A  (within one element).

And there may be other ways.  We may use these ways of comparing the sizes of finite sets to suggest 
ways of comparing the sizes of infinite sets.  Cantor chose 2, 3, and 4 for comparing infinite sets.  
Formally, he adopted the axioms
2 A⪁B  ⇒  ¬(|A| < |B|)
3 ¬(A⪁B)  ⇒  |A| < |B|
4 (A⪁B) ∧ (B⪁A)  ⇒  |A| = |B|
Altogether, they can be written as

(A⪁B)  =  (|A| ≥ |B|)
Cantor chose the countability ordering  ⪁  to be the size ordering:  less countable is larger.  Cantor 
rejected 1;  he said there are equally as many even naturals as naturals, even though the even naturals 
are a proper subset of the naturals.  Cantor rejected 5;  he said there are equally as many naturals as 
even naturals, not twice as many, even though there is a two-to-one correspondence from the naturals to 
the even naturals.  There is also a two-to-one correspondence from the naturals to the naturals, and 
perhaps Cantor did not want to say there are twice as many naturals as naturals.   But that wouldn't be 
crazy;  the number  0  is twice as large as itself.  Cantor rejected 6;  he said there are more reals than 
rationals, even though there is a rational between every two reals.  Between every two reals, there are 
infinitely many rationals;  that sits uncomfortably with saying there are more reals than rationals.  
Depending on the formalization of “having an infinite list”, Cantor may have to reject 0;  by the 
transitivity of ordering, he may have to say there are more infinite-sequence programs than programs, 
even though the infinite-sequence programs are a subset of all programs.  Cantor chose to use 2, 3, and 
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4, rejecting the other properties, for comparing infinite set sizes.  But he could have made a different 
choice.

Two hundred years before Cantor, Leibniz considered the same ordering of infinite sets that Cantor 
adopted, but Leibniz rejected it because he did not like saying there are as many even naturals as 
naturals.  Leibniz preferred the subset partial ordering, points 0 and 1.

Mathematical Design

Platonist mathematicians believe that mathematical objects, such as sets and numbers, exist in some 
sense, quite independently of people, and they discover facts, or truths, about them.  They believe that 
Cantor discovered the fact that set sizes are compared by the countability pre-order.  Thanks to the 
Platonist legacy, it is now standard to say that the following three statements are facts, or that they are 
true:
• There is the same number of even naturals as naturals.
• There are more reals than rationals.
• There are infinitely many infinities.
In contrast to a Platonist, a Formalist mathematician believes that mathematics is a language, or 
notation, designed by people to describe the world in a quantitative and calculational way.  Numbers 
and sets and so on are the words or expressions of the language.  They are not existing abstract objects, 
but they can be used to express or describe existing real objects in the domains of application of 
mathematics.  The application area motivates and justifies the design of a mathematical formalism.  We 
design it so that its theorems represent the truths in the application area.

The formalism in [1] was designed for reasoning about computation.  An infinite number  ∞  is needed 
to account for program computations that take infinite time (nonterminating computation).  The infinite 
sets of naturals, integers, and rationals are useful because their theories are much simpler and easier to 
reason with than the set of integers modulo 232 and the set of 64-bit floating-point numbers;  these 
infinite sets leave out the complications of finite boundaries that are irrelevant for many computations 
(even the IEEE floating-point standard includes  ∞ ).  Sometimes, as in the diagonal argument about 
programs that we saw earlier, we want to reason about programs that take infinite time and use 
infinitely many integers.  The infinity added for that purpose absorbs finite additions (∞+1=∞) and 
subtractions (∞–1=∞);  it also absorbs positive finite multiplications (∞×2=∞) and divisions (∞/2=∞).  
As a result, there are the same number of even naturals as naturals, AND there are half as many even 
naturals as naturals.

The theory in [1] includes an infinite number  ∞  added for a purpose.  It also includes arithmetic 
negation.  As a result, the theory includes a second infinite number,  –∞  (minus infinity), which is not 
wanted for the purpose of reasoning about computation, but results from the inclusion of both negation 
and  ∞ , which are wanted for that purpose.  The theory in [1] also includes data structures, and one of 
the simplest structures is the string (or sequence).  For example,  2; 5; 3; 7  is a string of four naturals.  
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There is also an ordering on strings (lexicographic).  The first items that differ determine the order.  For 
example,  2; 5; 3; 7  <  2; 5; 8 .  If one string is a prefix of another, it comes first.  For example,  
2; 5; 8  <  2; 5; 8; 2 .  Let  x  be real, and let  p  be positive real.  Then  0  <  0; x  <  p .  Hence  0; x  is 
an infinitesimal, larger than  0  but smaller than any positive real.  And  0  <  0; 0; x  <  0; p  <  p , so  
0; 0; x  is an infinitesimal smaller than  0; p .  And so on.  Similarly  x  <  ∞  <  ∞; x  < ∞; ∞  <  ∞; ∞; x  
and so on.  So  ∞; x  is an infinity larger than  ∞  but smaller than  ∞; ∞ .  The theory includes many 
infinities which are not wanted for the purpose for which the theory was designed, but result from the 
inclusion of both  ∞  and sequencing, which are wanted for that purpose.

The theory of surreal numbers was designed as a definition of finite numbers for the analysis of games.  
As a result, infinitesimals and infinities (all transfinite ordinals) got defined also.  But the application 
(game analysis) did not require infinitesimals and infinities.

For some applications, Hölder's process gives a useful comparison of the sizes of infinite sets of 
naturals.  Given a set  A  of naturals, define

S 0 n  =  if n∈A then 1 else 0 fi
S (m+1) n  =  (Σi: 0≤i≤n· S m i) / (n+1)

Then the size of set  A  relative to the size of the naturals is
⇕m· ⇕n· S m n

(the limit, as natural  m  increases to  ∞ , of the limit, as natural  n  increases to  ∞ , of  S m n ).  The 
relative size of the set of naturals is  1 .  The relative size of the set of even naturals is  1/2 .  The 
relative size of the set of positive naturals is  1 .  The relative size of the set of primes is  0 .

Perhaps there is an application area (outside mathematics!) that requires an infinite hierarchy of 
infinities defined by the countability relation.  So far, we do not know of such an application.  Until we 
find one, we have no motivation for defining higher cardinalities by Cantor's countability relation.

Perhaps higher cardinalities are just waiting for an application.  Pure mathematics is sometimes praised 
as being ready to apply when the right application comes along.  But I am skeptical of this justification.  
If you have a hammer and you're looking for an application, each potential application will look to you 
like a nail.  I am guilty of that mistake.  I wrote a thesis with the title “Applications of Group Theory to 
Quantum Mechanics and Particle Symmetries”;  you can apply group theory, but it would be better to 
design some mathematics to fit the application, rather than to bend the application to some existing 
mathematics.

Another example is the semantics of loops in programming.  One can form a sequence of 
approximations to the semantics by unrolling a loop more and more, and then take the limit of the 
sequence of approximations.  But this limit may not satisfy the loop's recurrence relation (may not be a 
fixed-point).  So the sequence is restarted from a higher cardinality, as though the loop could be iterated 
more than an infinite number of times.  But there are other, much simpler, methods for finding loop 
semantics that do not involve higher cardinalities [1].  So there have been applications (outside 
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mathematics) that have used higher cardinalities, but as far as I know, there have been no applications 
that required higher cardinalities, and none that were best served by higher cardinalities.

Conclusion

It is popularly believed that Cantor's diagonal argument proves that there are more reals than integers.  
In fact, it proves only that there is no onto function from the integers to the reals;  by itself it says 
nothing about the sizes of sets.  Set size measurement and comparison, like all mathematics, should be 
chosen to fit the needs of an application domain.  For all application domains that I know of, Cantor's 
countability relation is not the most useful way to compare set sizes.
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