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Abstract

This paper argues the following positions: that a formal specification is a boolean expression, 
that a program is a specification, and that total correctness is a poor choice of semantics.
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I have three opinions to present:  first, that a formal specification is a boolean expression;  
second, that a program is a formal specification;  and third, that total correctness is a mistake.  I 
am discussing what are sometimes called “formal methods” of programming, but I am not 
debating the usefulness of formal methods to programmers;  that debate has been well aired here 
and elsewhere.  I am debating the direction formal methods research has taken.  My concern is 
first to find a satisfactory theoretical foundation for programming, and ultimately to create useful 
tools to aid programmers.

Formal methods researchers have invented a fascinating variety of formalisms, and have probed 
into their far corners, finding some esoteric things, such as havoc and angelic nondeterminism.  
Although this work is theoretically interesting, I believe we are now in a position to say in a 
simple and clear way, independent of all special-purpose notations, what constitutes a formal 
specification, and what is the relationship between specifications and programs.

Opinion:  a formal specification is a boolean expression.

By “formal specification” I mean some kind of mathematical expression.  I shall argue that the 
best kind of expression to use as a formal specification is a boolean expression rather than a set 
or predicate or pair of predicates or predicate transformer or any other kind of mathematical 
expression.  For the purpose of arguing this opinion, it does not matter whether we are specifying 
computations, cars, or anything else.

First a word on my terminology.  By “boolean expression” I mean an expression that evaluates to 
a boolean when values are provided for its (global or free) variables.  I do not mean to be 
restrictive in the allowed operators;  quantifiers are welcome.  For example,

x>y ∧ (∃z· y = f(z))
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is a boolean expression.  I allow variables of any type, and any operators and functions.  
Terminology and notations that pertain to an application are encouraged.  Sometimes it is helpful 
to invent a notation specifically for use in one particular expression.

By “predicate” I mean a function that results in a boolean when applied to values in its domain.  
For example,

λy· y>5
I still say “predicate” when there are global variables, as in

λy· y>x
By “relation” I mean a function that results in a predicate when applied to values in its domain.  
For example,

λx· λy· y>x
which may also be written as a function of two variables

λx, y· y>x

I'm not concerned here whether variables are strongly-, weakly-, or un-typed;  choose your 
favorite.  And I'm not concerned here with definedness, completeness, computability, or order of 
evaluation.  And I don't distinguish between an expression that evaluates to a boolean and a 
proposition that becomes true or false when values are provided for the variables.  That's my 
terminology;  now for my arguments.

It is the job of a specification to distinguish those things that satisfy it from those that don't.  In 
the scientific tradition, we use variables for quantities that are of interest, and observation of 
something provides us with values for the variables.  For example, we may decide that the 
prestate and poststate of memory are of interest.  We may decide that communications during a 
computation are of interest.  We may decide that the start time and stop time of a computation are 
of interest.  I make no case here for any particular choice of quantities of interest.  But I insist 
that when we have a specification and an observation, we have to be able to put them together to 
find out whether the observation satisfies the specification.

One might suppose that any type of mathematical expression can be used as a specification:  
whatever works.  A boolean expression certainly works, since it provides one of two possible 
outcomes for each observation.  Functions with boolean result work also;  if there's only one 
variable, it's a predicate;  if there are two variables, it's a relation.  However many variables 
(quantities of interest) there may be, we can write a specification as a function, and apply it to the 
values provided by an observation to get one of two possible outcomes.  The difference between 
a boolean expression and a function is language level.  The function

λx, y· y>x



1998-12-7 Specifications, Programs, and Total Correctness 2

is equivalent to
λy, z· z>y

The names  x , y , and  z  are irrelevant;  only their positions are relevant when we apply the 
function.  In other words, we are using addresses to identify our quantities of interest.  We apply

(λx, y· y>x) 2 3
to find out that the ordered pair  2 3  satisfies the specification.  If instead we use the boolean 
expression  y>x  as specification, we refer to the quantities of interest by variable names, and we 
substitute

x:= 2; y:= 3; y>x
(for  x  substitute  2  and for  y  substitute  3  in  y>x ) to find out that  x=2 and y=3  satisfies the 
specification.  The boolean expression is both simpler and higher level than the function.

A set also works, but suffers exactly the same criticisms as a function.  The set of pairs
{x, y | y>x}

(which many people call a relation) is also syntactically more complicated than the boolean 
expression  y>x , and the extra syntax serves to bind the names  x  and  y , leaving only their 
positions (addresses) visible, and so lowers the language level.

The best known form of specifying a computation is a pair of boolean expressions:  the pre- and 
postcondition.  I'll borrow the notation  [P, Q]  from [16] for a specification consisting of 
precondition  P  and postcondition  Q .  In this form, the assumption is that the initial and final 
values of the program variables are the only quantities of interest.  In early work (1969-1980) the 
same identifiers were used for initial values and final values, so to say that  x  is increased, one 
had to introduce an extra variable and say awkwardly

∀X· [x=X, x>X]
Since we can observe both the initial value and final value, we should have a notation for each, 
as in VDM [13], Z [17], and sometimes the Refinement Calculus [0, 16].  I'll write  x  and  xʹ  as 
in Z, so to specify that  x  is increased we write more simply

[true, xʹ>x]
The specification  [P, Q]  means, informally:  if  P  is satisfied, then the computation terminates 
and satisfies  Q .  So termination is also considered observable, and we ought to introduce a 
boolean variable for it, say  h  (for “halt”).  Then we can write the specification as a single 
boolean expression:  P ⇒ h∧Q .  To say we want termination with an increase in  x  we say  h ∧ 
xʹ>x .  To say we want nontermination we write  ¬h .  If we just want partial correctness, it's  
P∧h ⇒  Q .  To make sequential composition simpler, we might like to replace  h  with two 
boolean variables  f  and  f ʹ  , where  f  means that computation begins at a finite time (not 
sequentially following an infinite loop), and  f ʹ   means that computation ends at a finite time 
(terminates);  then  [P, Q]  becomes  f∧P ⇒ f ʹ∧Q .  This last approach is the one taken in the 
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forthcoming book by Hoare and He [12], and suggested earlier in [6].

If we write anything other than a boolean expression (or predicate) as a specification, we must 
say what it means for an observation to satisfy the specification, and to do that we must write a 
boolean expression anyway.  For example, when is the specification  [x>0, xʹ=2]  satisfied by the 
observation  x=a  and  xʹ=b ?  The answer is that it is satisfied if and only if  a>0 ⇒ b=2 .  We 
really might as well have written the specification as  x>0 ⇒ xʹ=2  in the first place.

Refinement is the central idea in programming from specifications.  Informally, specification  S  
is refined by specification  T  if all computations satisfying  T  also satisfy  S .  Using a single 
boolean expression for each specification,  that's just (reverse) implication:

S⇐T
Using a pair of boolean expressions for each specification, refinement is more complicated:  
specification  [P, Q]  is refined by specification  [R, S]  when

P ⇒ R ∧ (Q⇐S)
Or we can define refinement by giving a large number of laws;  in effect, we have to learn two 
sets of laws, boolean laws and refinement laws, when one set will do.  For example, the law 
“weaken precondition”

If  A⇒B  then  [A, R]  is refined by  [B, R]
is no more than the boolean identity

(A⇒B)   ⇒   (A ⇒ B ∧ (R⇐R))
And the law “strengthen postcondition”

If  R⇐S  then  [A, R]  is refined by  [A, S]
is just the identity

(R⇐S)   ⇒   (A ⇒ A ∧ (R⇐S))

Z uses a single boolean expression as specification, but in a strange way.  It seems reasonable to 
me that weaker (truer) boolean expressions should be satisfied by more behaviors, and stronger 
(falser) boolean expressions should be satisfied by fewer behaviors, and at the extremes,  true  
should be satisfied by any behavior and  false  by none.  But in Z,  true  is satisfied only by 
terminating behaviors and  false  is satisfied by all nonterminating behaviors.  The advantage is 
that the class of specifications fits the class of computations:  there are no unsatisfiable 
specifications.  To say that  true  is not satisfied by something and that  false  is satisfied by 
something makes refinement rather complicated.  In Z, specification  S  is refined by specification  
T  when

∀s· ((∃sʹ· S) ⇒ (∃sʹ· T) ∧ (∀sʹ· (S ⇐ T)))
where  s  is the prestate and  sʹ  is the poststate.  Since refinement is what we must prove at each 
step in programming, it is best to make refinement as simple as possible. 
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It is very important that we be able to write a specification by parts;  we cannot possibly write 
realistic specifications all at once.  So we write several partial specifications, and we want 
behavior satisfying all of them.  If we are using a pair of boolean expressions for each partial 
specification, then it is not obvious how to put them together;  putting  [P, Q]  together with  [R, 
S]  yields

[P∨R, (P⇒Q)∧(R⇒S)]
For a discussion of the problem, see [15].  In Z, the problem is even worse;  you can put  S  and  
T  together if and only if

(∃sʹ· S∧T) ∨ ¬(∃sʹ· S) ∨ ¬(∃sʹ· T)
and you get

((∃sʹ· S∧T)⇒S∧T) ∧ (¬(∃sʹ· S)⇒T) ∧ (¬(∃sʹ· T)⇒S)
The PhD thesis of Frappier [3] is largely an attempt to solve the problem of specification by parts 
in a Z-like setting.  But there shouldn't be a problem;  if you write a specification as a boolean 
expression in the way I am advocating, and you want both behavior  S  and behavior  T , then 
you want behavior  S∧T ;  you put specifications together with ordinary conjunction.

One advantage sometimes claimed for predicate transformers over boolean expressions is the 
ability to express angelic nondeterminism, in which choices are made by an all-knowing and 
benevolent angel.  No-one claims that angelic nondeterminism is observable or physical, but in a 
very nice, enjoyable paper [18], Ward and Hayes claim that angelic nondeterminism is a useful 
calculational device.  The use is in obtaining backtracking computations.  But angelic 
nondeterminism is not necessary to obtain backtracking computations.  They can be obtained 
more simply using boolean expressions.  For example, we might want

x:= 0 or x:= 1;  ensure x=1
where “or” says do either one, but then “ensure” says which one it had to be, so if the wrong one 
was chosen, go back and choose the other.  As a boolean expression in one state variable,  
“ensure x=1”  is  x=1 ∧ xʹ=x , so the previous specification becomes

xʹ=0 ∨ xʹ=1;  x=1 ∧ xʹ=x
which is equivalent to

∃xʹʹ· (xʹʹ=0 ∨ xʹʹ=1) ∧  xʹʹ=1 ∧ xʹ=xʹʹ
which can be simplified to

xʹ=1
Although  x=1 ∧  xʹ=x  is unimplementable by itself (in other terminology, “infeasible” [16], 
“miraculous” [0], or “magic” [1]), in combination with disjunction we get something that is 
implementable by backtracking.  No predicate transformers are necessary.

Since I am not being restrictive concerning the types and operators appearing within a boolean 
expression, no other kind of expression is more expressive or more “powerful”.  If you really 
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want or need to use predicate transformers or anything else, you can do so within a boolean 
expression.  I do not argue against the use of sets, functions, or any other kind of mathematical 
expression;  they have many good uses, even within specifications.  I argue only that the 
specification as a whole should be a boolean expression.  There is, however, another side to the 
argument.  Observations can be represented either by adding a variable for each observable 
quantity (as advocated here), or by adding structure to specifications, for example by using pairs 
or tuples of boolean expressions, or by using higher-order functions as specifications.  We have 
already seen an example of this in the representation of termination.  For another example, the 
Refinement Calculus [1] presents specifications as contracts between two agents (an angel and a 
demon).  We could accommodate this view of specification while still maintaining our view that 
a specification is a boolean expression by adding a boolean variable to record the current agent.  
But the Refinement Calculus uses the two directions of the lattice of predicate transformers to 
represent the two agents, and thus very neatly takes advantage of all its duality laws.

The forms of specification that use a pair of boolean expressions, or a pair of predicates, or 
predicate transformers, or relations, are concerned with an initial and a final state;  in other 
words, batch computations.  They are not concerned with interaction during a computation, nor 
with time constraints (though there has been some work to further complicate them to do so).  
But a boolean expression is concerned with any quantity that is of interest:  you just use a 
variable for each.  An interaction sequence, or time, are as easily accommodated as initial and 
final state.  For details of such specifications, please see [8, 9].

One reason industry is reluctant to use formal methods may be that they correctly perceive that 
the methods offered are too complicated for the benefits conferred.  One of those complications 
is the form of specification.  A boolean expression gives you the concepts of satisfaction and 
refinement in their simplest form.  And boolean expressions are already in use by every 
programmer who ever wrote an if-statement.

First conclusion:  A specification together with an observation yields yes or no;  a boolean 
expression together with values for its variables yields yes or no.  A specification is a boolean 
expression whose variables represent quantities of interest.  Refinement is just reverse 
implication.  Partial specifications are put together by conjunction.  If instead we use a pair of 
predicates, or a function from predicates to predicates, or anything else, we make our 
specifications in an indirect way, we make satisfaction obscure, and we make refinement and 
specification by parts more complicated.  All of these complications may be fun for researchers, 
but they are unhelpful for software engineers.
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Opinion:  a program is a specification.

I now want to argue that a program is a specification, and that one's programming language 
should be a part of one's specification language.

A program tells a computer what to do.  If we look at it in a different mood, a program is a 
description, or prescription, of computer behavior.  A computer executes a program by behaving 
according to the program.  People often confuse programs with computer behavior.  They talk 
about what a program “does”;  of course it just sits there on the page or screen;  it is the 
computer that “does” something.  They ask whether a program “terminates”;  of course it does;  
it is the execution that may not terminate.  Furthermore, a computer may not behave according to 
a program for a variety of reasons:  a disk head may crash, a compiler may have a bug, or a 
resource may become exhausted (stack overflow, number overflow), to mention a few.  Then the 
difference between a program and computer behavior is obvious.  We can have a program 
without executing it, or without having a computer.  A program is not behavior, but a 
specification of behavior.

We often say we are specifying programs when we aren't.  To specify a program we could say 
what programming language it should be in, how the indentation should be done, maybe how 
long it can be.  When we say what relation we want between inputs and outputs, and what 
execution time we want, we are specifying computer behavior, not specifying a program.  Our 
bad habits of speech have resulted in some strange debates, such as whether programs should 
have specifications.

A specifier should write the clearest, most understandable specification they can;  a programmer's 
job is to refine it to obtain other specifications, the last of which is a program.  Sometimes the 
clearest, most understandable specification is already a program.  When that is so, there is no 
need for any other specification, and no need for refinement.  (Note:  if performance (time and 
space bounds) is of interest, it should be in the specification.  A too inefficient program cannot 
serve as the entire specification, though it could serve as part of the specification.)  Sometimes 
the clearest, most understandable specification is not a program, so the programming language 
should not be the entire specification language.  Sometimes the clearest specification uses 
notations from the application area, or notations invented by the specifier for this one 
specification, so the specification language should be open to any useful additions.

There was a great debate a little while ago about whether specifications should be executable.  
The pro side [4] cited the benefit of being able to test a specification to see if it is the right one.  
The con side [5] preferred to have a view orthogonal to execution.  In my opinion, the initial 
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specification should be as clear as possible;  to make it so, it may be executable, totally 
nonexecutable, or partly both.  The final specification is a program, and so it is executable.

If you put this opinion, that programs are specifications, together with my previous opinion, that 
specifications are boolean expressions, you get that programs are boolean expressions.  For 
example, if the observable variables are  x  and  y , then the program

x:= x+y
is just another notation for

xʹ=x+y ∧ yʹ=y
and the program

if x>y then x:= x+y
is just another notation for

x>y ∧ xʹ=x+y ∧ yʹ=y    ∨    x≤y ∧ xʹ=x ∧ yʹ=y
All programs can be treated this way.  Even loops are no problem.  For example, refining 
specification  S  by the loop  while b do P ,

S  ⇐  while b do P
is just another way of saying

S  ⇐  if b then (P; S)

As a quick example, let  x  be an integer variable, and suppose we want to prove that
while x≠1 do x:= x div 2

is a refinement of
x≥1 ⇒ xʹ=1

We prove
(x≥1 ⇒ xʹ=1) ⇐ if x≠1 then (x:= x div 2;  x≥1 ⇒ xʹ=1)

First we simplify the then-part by replacing  x  with  x div 2  in  x≥1 ⇒ xʹ=1 , and replace if with 
its boolean equivalent.

= (x≥1 ⇒ xʹ=1)   ⇐   x≠1 ∧ (x div 2 ≥ 1 ⇒ xʹ=1)  ∨  x=1 ∧ xʹ=x
We can simplify  x div 2 ≥ 1  to  x>1 , and make a boolean rearrangement.

= (x>1 ∧ xʹ=1 ⇒ xʹ=1)  ∧  (x=1 ∧ xʹ=x ⇒ xʹ=1)
Both these implications are obvious.  The laws employed were those of boolean algebra and 
arithmetic;  no special refinement laws are needed.

It is necessary, both for clear specification and for stepwise refinement, that the programming 
connectives be defined for all specifications.  For example, if  S  and  T  are any specifications 
(possibly but not necessarily programs), then  S;T  is a specification that says “behave according 
to  S , and then after according to  T ”.  If we refine specification  S  by a sequential composition  
T;U , we want to be able to prove that we have made a correct step
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S ⇐ (T; U)
before we further refine  T  and  U .  Good refinement methods, such as VDM and the 
Refinement Calculus, allow all specifications to be composed by programming connectives.

I believe it is also useful to allow programs to be composed by specification connectives.  For 
example,

(x:= x+1) ∨ (x:= x+2)
specifies that it is acceptable to increase  x  by either  1  or  2 .  If programs are specifications and 
specifications are boolean expressions, then programs can be connected by ordinary disjunction, 
and it is unnecessary to invent a special new operator for nondeterministic choice.  Similarly we 
can specify

x>0 ⇒ (x:= x+1)
or use any other boolean connectives for programs.  Those formalisms that do not accept 
programs as specifications find it necessary to duplicate operators and rules at each level.

I once wrote a paper whose abstract said “Programs are Predicates” [7] (by “predicate” I meant 
what I now mean by “boolean expression”).  C.A.R.Hoare has written two different papers both 
with that same phrase as title: “Programs are Predicates” [10, 11].  It certainly alliterates nicely, 
and succinctly expresses the combination of my first two opinions.

Second conclusion:  Programs specify computer behavior, so specifications should be able to 
make use of programming notations, as well as application notations and any other notations.  
We should be able to refine specifications to programs in steps, so that in the middle of this 
process we may have a mixture of programming and nonprogramming notations.  Programs 
should be given meaning in the same way as specifications so that the mixture is meaningful.

Opinion:  total correctness is a mistake.

One way to relate partial and total correctness is by the informal equation
partial correctness + termination = total correctness

Another way is by the informal inequation
partial correctness + time > total correctness

What I mean by this is the following.  Start with a partial correctness formalism.  Add a variable 
to stand for time.  Sprinkle into your program or specification time increments as appropriate.  
Use the formalism to reason about the time variable exactly the same way you reason about the 
other variables.  By finding the execution time you know more than just whether execution 
terminates, and it takes less effort!
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The time variable can be continuous and the time increments can be exactly the execution times 
of the machine instructions;  that way you can reason about real-time.  Or, if you prefer, the time 
variable can be integer-valued, and the time increments can count iterations of loops, ignoring all 
else;  that way you get a machine-independent measure.  You can choose whatever measure of 
time you like, but the domain of the time variable should include an infinite number to allow for 
nontermination.

For the example program of the previous section, we might like to show that, when  x≥1 , the 
execution time is bounded by  log x , where time is just iteration count.  That means proving

(x≥1 ⇒ tʹ ≤ t + log x)   ⇐   if x≠1 then (x:= x div 2;  t:= t+1;  x≥1 ⇒ tʹ ≤ t + log x)
The point is that there is no extra theory or proof rules to learn in order to prove the time bound, 
and hence to prove termination.  We might like to show that when  x<1  execution is 
nonterminating.  That means proving

(x<1 ⇒ tʹ=∞)   ⇐   if x≠1 then (x:= x div 2;  t:= t+1;  x<1 ⇒ tʹ=∞)
If we used a real-time increment, the calculation would be no harder.  When we place a time 
increment  t:= t+e  in a program, the expression  e  can depend on the values of variables;  it 
doesn't have to be a constant.  If we cannot say precisely what the time increment is, perhaps we 
can say what its bounds are:  a ≤ tʹ–t ≤ b .  For specification, refinement, and proof, we used only 
the notations and concepts of programming, arithmetic, and boolean expressions.

There are two usual ways to give meaning to loops (recursions) in a total correctness semantics:  
one is a limit of a sequence of approximations, the other is a least fixpoint.

The limit of approximations works like this.  Define
W0   =   true
Wn+1   =   if b then (S;  Wn)

Then
(while b do S)   =   (∀n· Wn)

As an example, we can find the semantics of
while x≠1 do x:= x div 2

in one integer variable  x .  We find
W0  =   true

 W1  =   if x≠1 then (x:= x div 2;  true)
        =   (x=1 ⇒ xʹ=1)
W2   =   if x≠1 then (x:= x div 2;  x=1 ⇒ xʹ=1)

          =   (1≤x<4 ⇒ xʹ=1)
Jumping to the general case, which we could prove by induction,

Wn  =  (1≤x<2n ⇒ xʹ=1)
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And so
     (while x≠1 do x:= x div 2)
=   (∀n· 1≤x<2n ⇒ xʹ=1)
=   (1≤x ⇒ xʹ=1)

In effect, we are introducing a time variable in disguise:  it is the subscript  n .  Wn  is the 
strongest specification of behavior that can be observed before time  n , in the measure that 
counts iterations.

The other usual way to define while-loops is as a least fixpoint.  There are two axioms.  The 
construction axiom

(while b do S)   =   if b then (S;  while b do S)
says that a while-loop equals its first unrolling.  Stated differently,  while b do S  is a solution of 
the fixpoint equation (in unknown  W )

W   =   if b then (S;  W)
The induction axiom

(∀s, sʹ·  W  =  if b then (S;  W))   ⇒   (∀s, sʹ·  W   ⇒ while b do S)
(where  s  is the state variables) says that  while b do S  is as weak as any fixpoint, so it is the 
weakest (least strong) fixpoint.  These axioms introduce a new form of arithmetic, while-loop 
arithmetic, in place of the arithmetic of a time variable.

A total correctness semantics makes the proof of invariance properties difficult, or even 
impossible.  For example, we cannot prove

xʹ≥x   ⇐   while b do xʹ≥x
which says, quite reasonably, that if the body of a loop doesn't decrease  x , then the loop doesn't 
decrease  x .  The problem is that the semantics does not allow us to separate such invariance 
properties from the question of termination.  If, in place of the above, we write

xʹ≥x   ⇐   if b then (xʹ≥x;  t:= t+1;  xʹ≥x)
then the proof of the invariance property is easy.

In practice, neither the limit of approximations nor the fixpoint axioms are usable for 
programming.  Instead, those who use formal methods tend to split the problem into partial 
correctness and termination argument.  Partial correctness of

(x≥1 ⇒ xʹ=1)   ⇐   while x≠1 do x:= x div 2
is

(x≥1 ⇒ xʹ=1)   ⇐   if x≠1 then (x:= x div 2;  x≥1 ⇒ xʹ=1)
as we have already seen.  For termination they use a “variant” or “bound function” or “well-
founded set”.  In this example, they show that for  x>1 ,  x  is decreased but not below  0  by the 
body  x:= x div 2  of the loop.  The bound function is again time in disguise;  they are showing 
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that execution time is bounded by  x .  Then they throw away the bound, retaining only the one 
bit of information that there is a bound, and hence termination.  In the example, showing that  x  
is a variant corresponds to the proof of

(x≥1 ⇒ tʹ–t≤x)   ⇐   if x≠1 then (x:= x div 2;  t:= t+1;  x≥1 ⇒ tʹ–t≤x)
Thus we express the termination proof in exactly the same form as the partial correctness proof.  
This linear time bound is rather loose;  for about the same effort, we proved a logarithmic time 
bound.  And in exactly the same way, we proved nontermination when  x<1 .  And we didn't 
require any extra theory or proof rules beyond boolean algebra and arithmetic.

We can even prove termination of an unboundedly long computation by finding a finite time 
bound!  Let  x  and  y  be natural variables.  Let  x:= ?  assign an arbitrary natural number to  x , 
and similarly  y:= ? .  Now consider the program

x:= ?;  y:= ?;
while ¬ x=y=0 do

if y>0 then y:= y–1
else (x:= x–1;  y:= ?)

Let  f: nat→nat .  Let  Σx  mean  Σi: 0.. x–1· f i  (the sum of the first  x  function values).  We say 
nothing more about function  f ;  it is totally undetermined.  Since  x  is changed to a fresh value 
just before  y:= ?, we can replace  y:= ?  by  y:= f x .  Function  f  is finite, and therefore proving 
that  Σx+x+y  is the execution time proves termination.  We prove

tʹ = t+Σx+x+y   ⇐ if x=y=0 then ok
else if y>0 then (y:= y–1;  t:= t+1;  tʹ = t+Σx+x+y)
else (x:= x–1;  y:= f x;  t:= t+1;  tʹ = t+Σx+x+y)

The proof is in three parts:
tʹ = t+Σx+x+y   ⇐   x=y=0 ∧ xʹ=x ∧ yʹ=y ∧ tʹ=t
tʹ = t+Σx+x+y   ⇐   y>0 ∧ (y:= y–1;  t:= t+1;  tʹ = t+Σx+x+y)
tʹ = t+Σx+x+y   ⇐   x>y=0 ∧ (x:= x–1;  y:= f x;  t:= t+1;  tʹ = t+Σx+x+y)

In the second and third parts, make the substitutions indicated by assignments, and simplify.  
Incidentally, the limit of approximations definition and the fixpoint definition disagree on the 
meaning of this loop.  According to the limit of approximations, the while-loop equals

x=0 ⇒ xʹ=yʹ=0
According to the fixpoint axioms, it equals

xʹ=yʹ=0
To bring the two back into agreement, we must enter the realm of transfinite numbers, extending 
the approximations beyond infinity, as though a loop could be iterated more than an infinite 
number of times;  for further details, see [2].  From Gödel and Turing we know that a complete 
and consistent theory in which termination can be expressed is impossible, so any total 
correctness theory will therefore be incomplete in its treatment of termination.
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Similar to the technical difficulties with total correctness, there is a philosophical difficulty.  (If 
you are allergic to philosophy, or perhaps I mean immune to it, skip ahead to the conclusion.)  
Suppose you are given some software and a specification of it.  You are entitled to complain if 
you observe any behavior contrary to the specification when you execute the software.  If the 
specification says  xʹ=2 ∧ tʹ–t<100  (measuring time in seconds), then you can complain if either 
you get a final value of  x  other than  2  or the computation takes 100 seconds or longer.  If the 
specification just says  xʹ=2 , you are entitled to complain if a computation delivers a final value 
of  x  other than  2 , but you are not entitled to complain about the length of time it takes.  If it 
takes forever, there is never a time when you can complain that it has taken too long.  If the 
specification says  xʹ=2 ∧  tʹ–t<∞ , promising finite execution time (termination) but giving no 
other time bound, and the computation takes forever (nontermination), you still cannot complain;  
there is never a time when you can say that the specification has been violated.  A promise of 
termination without a time bound is a worthless promise.

Third conclusion:  a so-called “total correctness” semantics is not worth its trouble.  It is a 
considerable complication over a partial correctness semantics in order to gain one bit of 
information of dubious value.  So-called “partial correctness” with a time variable provides more 
information at less cost.  I propose that we drop the term “total correctness”, since it isn't total in 
any sense.  We can also drop the term “partial correctness”, since it is not in contrast to anything.  
Although it is clear to me that total correctness formalisms are inferior to partial correctness plus 
time, I do not expect total correctness to be abandoned by those who have a deep commitment to 
it.  It takes a generation to make such a change in a research community.  My hope is that those 
who are not yet committed to total correctness will choose a better path.

Acknowledgment

I am grateful to Leslie Lamport for comments on a draft of this paper.  We seem to be in 
agreement on all points, though Lamport downplays the advantage of boolean expressions over 
predicates, and says that time is most conveniently added in the form of temporal operators.  
Lamport's view can be found in [14].

References and Further Reading

[0] R.-J.R.Back: “a Calculus of Refinement for Program Derivations”, Acta Informatica, v.25 
p.593-624, 1988.

[1] R.-J.Back, J.vonWright: Refinement Calculus: a Systematic Introduction, Springer, 1998
[2] P.Cousot, R.Cousot: “Constructive Versions of Tarski's Fixed Point Theorems”, Pacific 



1998-12-7 Specifications, Programs, and Total Correctness 13

Journal of Mathematics v.82 n.1 p.43-57, 1979.
[3] M.Frappier: a Relational Basis for Program Construction by Parts, PhD thesis, University 

of Ottawa, 1995.
[4] N.E.Fuchs: “Specifications are (preferably) executable”, IEE/BCS Software Engineering 

Journal v.7 n.5 p.323-334, 1992.
[5] I.J.Hayes, C.B.Jones: “Specifications are not (necessarily) executable”, IEE/BCS Software 

Engineering Journal v.4 n.6 p.330-338, 1989.
[6] E.C.R.Hehner: “Predicative Programming”, Communications of the ACM v.27 n.2 

p.134-151, 1984.
[7] E.C.R.Hehner: “Termination is Timing”, International Conference on Mathematics of 

Program Construction, The Netherlands, Enschede, 1989 June; also J.L.A.van de 
Snepscheut (editor): Mathematics of Program Construction, Springer-Verlag, Lecture 
Notes in Computer Science v.375, p.36-47, 1989. hehner.ca/TT.pdf

[8] E.C.R.Hehner: a Practical Theory of Programming, Springer, 1993;  current edition 
hehner.ca/aPToP

[9] E.C.R. Hehner: “Abstractions of Time”, chapter 12 in a Classical Mind, Essays in Honour 
of C.A.R.Hoare, edited by A.W. Roscoe, Prentice-Hall International Series in Computer 
Science, p.191-210, 1994;  hehner.ca/AoT.pdf

[10] C.A.R.Hoare: “Programs are Predicates”, in C.A.R.Hoare, J.C.Shepherdson:  Mathematical 
Logic and Programming Languages, p.141-154, Prentice-Hall International, London, 1985, 
and in C.A.R.Hoare, C.B.Jones: Essays in Computing Science, p.333-349, Prentice-Hall 
International, 1989.

[11] C.A.R. Hoare: “Programs are Predicates”, ICOT journal v.38, 1993.
[12] C.A.R.Hoare, J.He: Unifying Theories of Programming, Prentice-Hall International, 1998.
[13] C.B.Jones: Systematic Software Development using VDM, Prentice-Hall International, 1986 

and 1990.
[14] L. Lamport: “an Old-Fashioned Recipe for Real Time”, ACM TOPLAS v.16 n.5 

p.1543-1571, 1994
[15] C. Morgan: “the Cuppest Capjunctive Capping, and Galois”, pages 317-332 in a Classical 

Mind, Essays in Honour of C.A.R.Hoare, edited by A.W. Roscoe, Prentice-Hall 
International, 1994.

[16] C.Morgan: Programming from Specifications, second edition, Prentice-Hall International, 
1994.

[17] J.M.Spivey: the Z Notation: a Reference Manual, Prentice-Hall International, 1989.
[18] N.Ward, I.Hayes: “Applications of Angelic Nondeterminism”, University of Queensland, 

Proceedings 6th Australian Software Engineering Conference, 1991.

http://hehner.ca/TT.pdf
http://hehner.ca/aPToP
http://hehner.ca/AoT.pdf

