Information Processing Letters 30 (1989) 51-56
North-Holland

REAL-TIME PROGRAMMING

Eric C.R. HEHNER

16 January 1989

Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, Canada M5S 144

Communicated by W.M. Turski
Received 29 January 1988

We try to say what constitues real-time programming by looking at some examples. We also comment on the kind of
communication primitives that aid this programming, and the kind of formal semantics that is required.

Keywords: Real-time, communicating processes

Introduction

The term “real time” was first used in contrast
to “simulated time”; by comparing the value of
the “time” variable in a simulation with the real
execution time of the simulation program, one
obtains a measure of simulation speed. The term
“real-time programming” is commonly used now
as a synonym for “control programming”; it de-
scribes the programming of a device that must
interact with an impatient physical environment.
One is supposed to think of a chemical plant or
nuclear plant where a device must react quickly to
its inputs to control the chemical or nuclear pro-
cess. Reacting to the keystrokes on the keyboard
of a word processor presents the same sort of
programming problem, although the penalty for
slowness may be less consequential. It is hard to
think of a device that does not have to react
within a limited time. :

One approach to this (or any) programming
problem is to choose a powerful semantic for-
malism that allows us to express every sort of
property that we suspect we may want to express.
In particular, when time is a concern, we may
choose temporal logic, or we may choose to base
our logic on a clock with indexed ticks that allow
us to refer to any instant. We shall take the
opposite approach: we begin with a simple for-

malism that does not refer to time, and complicate
it grudgingly when it becomes necessary.

Programming notations

We adopt some of the notations of communi-
cating sequential processes. Output of the value of
expression e on channel ¢ will be denoted

cle
Input is requested on channel ¢ by the notation
@

If input is not yet available on that channel, it is
awaited. When the input is received, it is referred
to simply as ¢. Our decision not to couple input
with variable assignment simplifies the semantics,
and it saves each programmer from introducing a
variable for the purpose, whose appropriate name
is the same as the channel name.

If ¢ and d are input channels, and P and Q are
programs (or program fragments), then

c?de?Q

denotes input choice. It is executed as follows: if
no input is available on either channel, input is
awaited; the first input received determines which

0020-0190,/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 51

Volume 30, Number 1

one of the choices (either ¢?P or d?Q) is ex-
ecuted; if input is already available on one chan-
nel but not on the other, the corresponding choice
is executed; if input is already available on both
channels, an arbitrary one of the choices is ex-
ecuted. Without adding time to the semantic for-
malism, we have no means to say “first”. For-
tunately, we are saved from having to add time by
the following observation: an input choice must
be designed to work no matter which input arrives
first, hence no matter which input is chosen (ex-
cept that it cannot wait forever for one input when
the other is available). For logical correctness,
there is no need to say “first”. An implementation
that chooses the first available input will be cor-
rect, and usually (but not always) the most effi-
cient. We return to this point in the section titled
“Time complexity”.

We use P;Q and P | Q for sequential and
parallel composition of programs P and Q. We
use *P for the infinite repetition of program P.
The precedence of these operators is: * before ;
before D before || unless parentheses indicate

otherwise.

Buffering

The channels used by a process and its environ-
ment to communicate with each other are called
“external” to that process. A process may be
composed of subprocesses communicating with
each other; the channels they use are called “in-
ternal” to the process (but external to the sub-
processes). When we introduce a new internal
channel, we must decide the answers to the follow-
ing questions.

(A) What is the buffer size? It can be zero,

infinite, or anything between.

(B) When the buffer is full, does the sender
wait? (We assume that when it is empty,
the receiver waits.)

(C) When the buffer 1s full, if the sender does
not wait, which message is lost? (Two pos-
sibilities are: the oldest or the newest.)

In CSP channels have buffer size zero (so they are

52

INFORMATION PROCESSING LETTERS

16 January 1989

always full), and the sender waits until the receiver
is ready (and question (C) does not apply). For
our internal channels we choose infinite buffers.
These buffers are never full, so questions (B) and
(C) do not apply. This choice is the simplest one
for the semantics (as we see in the next paragraph),
and is usually the most convenient for pro-
grammers. When it is not, we must create the sort
of communication we want, as we shall see in the
examples.

Here is an outline of the semantics of infinitely
buffered communication. Each channel is a list-
valued variable with an index. In the outputting
process, the list is initially empty, and output is
catenation to the end of the list. The final value of
the list in the outputting process is taken as the
initial value of the list in the inputting process.
This does not mean that all output is produced
before any input is read, but only that the input is
the result of the output. Input simply advances the
index in the list. This semantics suffices even when
there are feedback loops in the communication.
For further details, see [1].

An implementation cannot provide an infinite
buffer. Nor can it provide the integer data type,
nor the list data type, nor the operators to com-
pose programs (sequential composition, condition-
als,...) in their full generality. It can provide only
a finite approximation. In a language, it is as
reasonable to have infinite buffers as it is to have
integers or lists or program composition operators.

For external channels, we do not need to answer
the three questions posed earlier. From a pro-
grammer’s point of view, the answers are irrele-
vant. A program must direct a computer to func-
tion correctly for the data that it receives, regard-
less of whether the data were buffered, whether
the sender waited, or which messages may have
been discarded. Of course, “external” is a relative
term; still, the questions are irrelevant whenever a
process is considered by itself, rather than as a
component of a larger program. Perhaps the point
can be made more strongly: when we consider two
communicating processes, we can ask whether
communication between them is buffered, but
when we consider just one of them, the question
has no meaning.

Volume 30, Number 1
Example: Keyboard

Consider now a computer with keyboard input
and screen output. Its overall program might be
divided into two processes communicating on an
internal channel called buf.

* (keyboard?; buf! keyboard)
|| * (buf?; process buf)

The front process receives input on the keyboard
(an external channel), and communicates these
inputs to the back process on the internal channel.
The back process receives these inputs and
processes them (generates appropriate responses
on the screen). This division into processes with a
buffer serves no logical purpose, but it has a
physical purpose. We may want to dedicate a
special processor and buffer to the keyboard, so
our program structure matches the intended
hardware structure. If there is only one processor,
we want to ensure that the keyboard input gets
enough processor time so that no characters are
lost. (Having made the division, it is reasonable to
let the front process do a few other things not
shown here, such as compose characters from
keystroke combinations and durations.)

In general, if one process feeds data to another
process faster than the receiver can process it, a
buffer will not solve the problem; it will fill up
indefinitely, and the combination will run at the
speed of the slower process. But in many cases, a
buffer is helpful. In the keyboard example, there is
a natural mechanism to ensure that the buffer
does not fill up indefinitely: the human using the
machine will want to see some output before
continuing to provide input. The buffer smoothes
this natural feedback so that the human can type
as fast or as slow as desired.

Example: Reaction controller

We now turn to the problem of a reaction
controller in a chemical plant. We suppose there is
a sampler and digitizer that provides input at a
certain rate. The controller must be fast enough to
control the reaction properly; suppose it can do so

INFORMATION PROCESSING LETTERS

16 January 1989

by reacting to sufficiently many of the inputs,
allowing some to be lost. We then divide our
controller as before into a front end and a back
end, with a communication channel described as
follows: the buffer size is one, the sender (front
end) does not wait, and the older message is lost.
Since this is not the sort of communication pro-
vided by our internal channels, we must program
it. Here is the outline.

4 (sampler? D request? reply! sampler)
|| * (request! “ready”; reply?; process reply)

The front end repeatedly listens for input from the
sampler and for data requests from the back end.
The back end requests data when it is ready,
receives the reply, processes it, and repeats its
cycle. This program structure has both a logical
and a physical purpose. The logical purpose is to
provide a kind of communication that differs from
the one provided by our communication primi-
tives. The physical purpose is again to identify
processes that must be executed with sufficient
speed to match the external world; the front end
must be ready for all inputs, and the back end
must provide output quickly.

Example: Watch

Our final example is a watch. For simplicity,
the display D is an integer modulo something. (Its
presentation using mixed bases is not our present
concern.) There are two buttons: M is the mode
button, and A4 is the advance button. The mode
button changes between time-mode and set-mode.
In time-mode, the display cycles through its val-
ues, changing once each time unit. In set-mode,
the display cycles through its values, changing
once at each press of the advance button. (The
display could be set in a more sophisticated way if
we were to consider its presentation using mixed
bases.)

The watch example mentions time explicitly,
requiring us to represent if. The previous examples
were not really concerned with time; their devices
must be quick enough to match external events,
however fast or slow that may be. But a watch

53

Volume 30, Number 1

must tick at a particular speed. How can we
program it to do so? A little reflection tells us that
time is defined physically, not logically; it must be
given, and cannot be specified. It can be the basis
of a semantic formalism [3], or it can be provided
as a sequence of ticks on a communication chan-
nel. Taking the latter suggestion, in time-mode the
watch behaves according to the following pro-
gram:

TimeMode:
(M? SetMode D tick? D := D + 1; TimeMode)

This program must be executed fast enough to
receive each input as it occurs. If the M button is
pressed, the watch goes into set-mode; if a tick is
received, D is increased by one (modulo some-
thing), and the watch stays in time-mode. We
define set-mode similarly.

SetMode:
(M? TimeMode D A? D= D + 1; SetMode)

Again, inputs must be received as they occur. The
watch is started in either of its two modes.

So far, we have considered the ticks to be an
external channel. Now let us consider the source
of ticks (quartz) as a process in parallel with the
rest of the watch. What happens to a tick while
the watch is in set-mode? We do not want it to be
buffered and processed later. We want the channel
from the quartz to have the following characteris-
tics: the buffer size is zero, the sender does not
wait, and the message is lost if the receiver is not
ready. (If we consider the human process, we can
similarly say that pressing the advance button in
time-mode is lost.) Since this is not the sort of
communication we have chosen to provide, we
must program it by modifying our definitions as
follows.

TimeMode:
(M? SetMode [A? TimeMode
D tick? D :== D + 1; TimeMode)
SetMode:
(M? TimeMode [| A? D= D + 1;
SetMode D tick? SetMode)

54

INFORMATION PROCESSING LETTERS

16 January 1989

The next refinement is a step towards implemen-
tation as a circuit: it introduces boolean variable
m in a single loop.

*(M? m=—-m
D A? if m then D:=D + 1
D tick? if —m then D:=D + 1)

In all applications, a process must wait for any
data it needs that are not yet ready, and it must
produce its output fast enough for its purpose,
whether that purpose is to control a chemical
reaction or to inform an impatient human. Those
are the constraints on its speed. It is rare that a
process must produce its output at exactly a given
time, rather than just “fast enough”.

Time complexity

A semantics without time is simpler than one
with, and it allows us to perform transformations
and optimizations. For example, we can write

(x=x+4+1; x=x+2)=(x=x+3)

if we are considering only the input-output rela-
tion and not the execution time. We would like to
retain these benefits, but be able to calculate the
execution time when it is needed.

We prove time properties the same way we
prove other properties, using the same semantics.
Let P be a program, and let ¢ (for time) be a fresh
variable (not appearing in P). Form program Pt
from program P as follows. Begin with 7:=0
setting the time to zero. Replace each assignment
x := e with the pair of assignments

(t=t+a; x=e)

where a is the time needed to evaluate e and
perform the assignment. This information must be
obtained from a knowledge of the implementa-
tion. Replace each output c!e with

(t:=t+b;cle)

where b is the time needed to evaluate e and
perform the output. Replace each conditional pro-
gram

if e then O else R

Volume 30, Number 1
with
(t:=1t+c;if e then Q else R)

where ¢ is the time needed to evaluate e and
perform a branch. The loop construct and sequen-
tial composition do not need any changes. We will
consider parallel composition, input, and input
choice in a moment. Then to prove something
about the execution time of P is just to prove
something about the final value of ¢ in Pt. In
general, it will depend on the initial values of the
other variables.

In a parallel composition, we introduce a tem-
porary time variable for each process, and then
take the maximum. Replace Q || R with

(tq:=t; tr:=1;(Qr|| Rr); t = max tqtr)

where tq and tr are fresh, Qr is formed from Q
using time variable tg, and Rt is formed from R
using time variable fr.

An input request ¢? from an external channel
must be replaced by

(z=t+w;e?)

where w is the length of time spent waiting for the
input. This time may not be knowable, so an
assumption must be made. It is reasonable to
assume that w is zero, that inputs are always
ready, and to affix a note to any conclusions
saying that times will be increased by any delays
waiting for input. In some circumstances, the time
that an input is ready may be known. If an input
is ready at time r, then its input request ¢? must
be replaced by

(z:=max tr; c?)

Input choice can be treated simply by treating
its inputs as above (for syntactic reasons, the time
change must be placed after the input, rather than
before). However, if we know that the implemen-
tation always chooses the first available input, we
can do better. The input choice c?QDd ?R be-

comes
(t:=t+ (min we wd); (C?Q I d?R))

where we is the waiting time for channel ¢ and wd

INFORMATION PROCESSING LETTERS

16 January 1989

is the waiting time for channel 4. Alternatively, if
rc and rd are the times that the communications
will be ready, we can use

(t== max ¢ (min rerd); (c?QDd?R))

Internal communication channels between
parallel processes present a problem. Here is an
example in which the spaces represent waiting for
time-consuming evaluations of the two expres-
sions e6 and e8.

x = eb; c! x; d?;, z:==d
Il ¢’ Y=e¢8; d!y

The time spent waiting for input is not an un-
known, but it depends on another process. In
more complicated examples, the dependencies can
be complicated. Recall that parallel processes QO
and R give us separate time variables 7g and ir.
Suppose channel ¢ goes from Q to R. Within Q
replace c! e with (tq = tq + b; c! tq; c! e) where b
is the time needed to evaluate e and perform the
output. Within R replace ¢? with (¢?; 7 = max r
¢; ¢?). Suppose assignment and output each take
time 1, evaluation of e6 takes time 6, and evalua-
tion of e8 takes time 8. Then the above example
becomes

(tg=1: tr:=t;

@' lgalils = eb):
(tg=1tq+1; c'tg; c! x);
(d?; tq==max tq d; d?);
(tg=tq+1; z:=4d)

|| (c?; tr:==max trc; c?);
(tr=1tr+9; y:=e8);
(tr=tr+1; d!tr; d! y))

¢ = max tq tr)

The time gets passed back and forth between the
processes. (If the type of channel value is not
numerical, a separate channel may be defined for
the purpose.)

Calculating the execution time of a program
using the calculus we have presented is a for-
midable task; it has all the problems of calculating
the semantics. Although it may never be practical
to calculate the exact time, it is practical to calcu-

55

Volume 30, Number 1

late upper bounds: whenever an expression be-
comes unwieldy, it can be replaced by a greater
but simpler one. By analogy with semantics calcu-
lation, we suppose the calculus is much more
useful in the construction of programs whose ex-
ecution time bounds are given than in the calcula-
tion of execution time bounds of given programs.

Conclusion

If a device does not react fast enough to its
inputs, there are three options: to obtain faster
hardware (perhaps more processors in parallel), to
write a better program, or to concede that we
cannot currently automate the process. It is of no
use to invent a more powerful semantic formalism
(e.g. one based on time). To know whether a
device will react fast enough, we need a timing
calculus; once again, this does not require us to
complicate the semantic formalism.

“Real-time programming” is a term in search
of a definition; I am not very concerned whether
it finds one. The examples show some common
characteristics: a separation of the task into
processes whose execution speeds must match par-
ticular external input or output speeds. The input
choice operator is used to merge input streams.

56

INFORMATION PROCESSING LETTERS

16 January 1989

Perhaps real-time programming is just this pro-
gramming paradigm.

Acknowledgements

This paper was inspired by a talk given by
Wlad Turski at IFIP W.G.2.3. The watch example
was suggested by N. Halbwachs. The method of
calculating time complexity for sequential pro-
grams comes from [2] (except that Lengauer used
the “weakest precondition” calculus and conse-
quently his clocks ran backwards). We have ex-
tended the method to parallelism and communica-
tions.

References

[1] E.C.R. Hehner, Predicative programming, Comm. ACM 27
(2) (1984) 134-151.

[2] C. Lengauer, A methodology for programming with con-
currency; the formalism, Sci. Comput. Programming 2
(1982) 19-52.

[3] J.-L. Bergerand, P. Caspi, N. Halbwachs and J.A. Plaice,
Automated control systems programming using a real time
declarative language, In: 4th IFAC/IFIP Symposium on
Software for Computer Control (SOCOCO), Graz Austria,
1986.

