Programming with Grammars: an Exercise in
Methodology-Directed Language Design

Eric C. R. Hehner

Computer Systems Research Group, University of Toronto, Toronto, Canada M5S 1A4

Brad A. Silverberg

Apple Computer Corp., 10260 Bandley Drive, Cupertino, CA 95014, USA

Our premise is that programming languages should be designed to facilitate a programming methodology. We begin
with the methodology of Michael Jackson; the notation that results is similar to Hoare’s communicating sequential
processes. Data and processing structures are described together in one grammatical formalism.

INTRODUCTION

It is easy, and all too common in Computing Science, to
invent a tool without providing methods for its use.
Hardware designers are recognized culprits: though their
machines are commonly used via a layer of software that
provides the user with a high-level language, it is still
rare for their designs to be determined by this use. We
programming language people are pleased to point this
out,’ but we commit the same sin at our higher level.
After the invention of ALGOL 60, we waited ten years
to begin to enunciate methods for programming in
ALGOL-like languages—so-called ‘structured program-
ming’. Our habit is still to design languages or features,
then to search for axioms, and finally to propose methods
of use based on the axioms. An outstanding exception is
Dijkstra’s guarded-command notation,* which was de-
termined by its methodology.

We begin with the methodology of Michael Jackson,’
and develop a notation that is intended to correspond to,
or facilitate, this methodology. The resulting notation is
similar to Hoare’s notation for communicating sequential
processes.®

We illustrate the methodology and the notation with
an example: the Telegram Problem.”*® The problem is,
of course, irrelevant to the point of the paper; it was
chosen because it is sufficiently complicated to illustrate
the value of the methodology, but no more complicated.

GRAMMAR AS SPECIFICATION

Problems are usually stated in English (or other natural
language), which makes precision difficult. Here is our
example problem, omitting one bit of detail to be added
later.

A program is required to process a stream of
telegrams. Thisstream isavailable asa sequence
of letters, digits, and blanks The words in
the telegrams are separated by sequences of
blanks and each telegram is delimited by the
word ‘ZZZZ’. The stream is terminated by the
occurrence of the empty telegram, that is a
telegram with no words. Each telegram is to be
processed to determine the number of charge-

able words and to check for occurrences of
overlength words. The words ‘ZZZZ’ and
‘STOP’ are not chargeable and words of more
than twelve letters in length are considered
overlength. The result of the processing is to be
a neat listing of the telegrams, each accom-
panied by the word count and a message
indicating the occurrence of an overlength
word.

As with any informal specification, there is the danger
that one person’s understanding of the problem may
differ from another’s. It is not clear whether the input
may contain only the empty telegram. It is not clear
whether the program should terminate on a telegram
with no words, no words except ‘ZZZZ’, or no chargeable
words (from Henderson’s solution we may infer that he
intended the last meaning). The value of a formal
specification to make one’s understanding clear and
unambiguous has been argued forcefully many times (e.g.
Ref. 9). An appropriate way to specify formally the legal
inputs to a program is by a grammar; Noonan'® and
McKeeman'' have done exactly that for the Telegram
Problem. The following grammar is adapted from
McKeeman’s; we shall explain the notation afterward.

telestream: *space; *(telegram; + space);
“ZZZZ”; (space|eof).

telegram: + (word; +space); “ZZ77>.

word: + (letter | digit). {but not “Z2Z727”}
letter: ‘A’|‘B’|. . .|‘Z".

digit: *0’|‘1’|. . .|*9".

space: * ’

eof —.

We have made several increasingly common changes to
BNF, and some odd changes whose purpose will become
clear by the end of the paper. We have dropped the angle
brackets from the non-terminals, and at the same time
put quotes around the terminals (single quotes for single
characters, and double quotes for strings) ; the advantages
are the ability to distinguish terminals from metasymbols,
and the ability to specify a blank space. The end-of-file
mark — is acting as a terminal here, but is special in a
way that will become clear later. BNF’s *; :="has become
‘:’. On the right sides we allow any regular expression
operators, rather than just concatenation and alternation,
and we allow these expressions to be nested, with the aid

CCC-0010-4620/83/0026-0277 $02.50

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 277

E. C. R. HEHNER AND B. A. SILVERBERG

of (meta)parentheses. Alternation is denoted by ‘|’ as
usual. Concatenation is denoted by ;’. The unary prefix
‘*’ operator means ‘zero or more of’, and the unary prefix
‘4’ means ‘one or more of . Other operators, such as ‘?’
meaning ‘optional’, are possible. Each grammar rule
ends with a period.

Following “ZZZZ” in telestream, a space or end-of-file
mark is needed so that the stream is not terminated by a
word beginning “ZZZZ”. The same role is played by the
two occurrences of +space. Whether this grammar
corresponds to Henderson’s intent is not important; it
makes clear the understanding that we shall adopt. The
need for a comment in the rule for word points out an
inadequacy of context-free grammars. Though we could
specify all finite sequences of letters and digits except
“ZZZZ” with context-free (even regular) rules, it is
awkward to do so. McKeeman introduces conjunction
and difference operators that solve the immediate
problem; however, there are sometimes constraints that
require a more powerful formalism. We shall allow the
insertion of Boolean expressions into the grammar rules.
In the example, we want to insert the expression
word # “ZZZZ” at an appropriate place. This notation
is derived from a particular form of two-level grammar
called ‘affix grammar’,!% 13

We have stated that a grammar is a tool for the precise
specification of the possible inputs to a program. Often,
a programmer is not told what the input looks like; it is
part of his task to decide that. Every such programmer is
a language designer; the set of possible inputs is a
language. The design will be better (simpler, more
elegant, more complete) if the language designers’ best
tools are used.

can supply an algorithm, such as LALR(1), that is more
powerful than one a programmer can reasonably write,
such as LL(1). Thus more input structures can be
accommodated with less effort. A parser generator can
perform optimizations that are too complicated or tedious
to be done by hand. If a better parsing algorithm is
discovered, programs written as grammars take imme-
diate advantage, and the programmer need not know the
details of the new algorithm. The current practice is that
each programmer writes for each program what is, in
essence, an ad hoc parsing algorithm to recognize the
input. We propose to free the programmer from having
to supply any particular parsing algorithm; he writes
only a descriptive grammar.

Our point would be complete if recognizing the input
were a separate activity, but usually one needs to embed
further processing and output into the grammar/program.
Compiler writers have called this ‘attaching semantics to
syntax’, and have invented special notations for the
purpose.'!?~!'* These notations have come far toward
making grammars enhanced with semantic annotations
a practical compiler-writing tool. The remaining awk-
wardness can be removed, we claim, by thinking of
grammars as programs in a programming language, that
is, by applying principles that have been successful in
programming language design. For example, grammar
symbols in an enhanced grammar may have inherited
and synthesized attributes'* (or inherited and derived
affixes!?). These are similar to input and output param-
eters in programming languages. If we maintain separate
terminologies and forms, we may miss the relevance of
the considerable literature about parameter forms and
mechanisms.

GRAMMAR AS MODEL

NOTATION

A grammar does more than just specify a set of strings:
it also specifies a structure. There are many grammars
that describe the same set of legal inputs, but a particular
grammar shows a particular way of structuring the
problem that can serve as a model for the solution.
Jackson, Noonan and McKeeman® '%!! present solu-
tions to the Telegram Problem, in COBOL, SIMPL-T
and PL/I, respectively, using grammars as models.
Jackson proposes that programs should be designed this
way. His method produces, in essence, an LL(1) parser
for those grammars that are LL(1); for those that are not,
some backtracking is introduced.

For some problems, a single grammar is insufficient as
a model for the entire program. The input grammar can
always serve as a model for the portion of the program
that reads the input, but other grammars may be needed
for other parts. We shall return to this point later; for the
present, we shall assume that the structure of the input is
the structure of the entire solution.

GRAMMAR AS PROGRAM

A grammar is not just a model for a program that reads
input: it is a program that reads input. Using a parser
generator as compiler, one need not translate to a more
conventional programming language. A parser generator

278 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

The following is not intended to be a complete nor a
definitive description of a language, nor is the partially
described language intended to be exemplary. We present
just enough notation to allow us to present our example
of the programming method.

(1) The body (right side) of a grammar rule may contain
variable declarations, assignments, Boolean expres-
sions, input and output (see (4) below). The scope of
variables is local to the rule in which they are
declared.

(2) Non-terminals may have parameters. For example,
the rule

Jjack (x:integer): body.
declares that x is an integer-valued input parameter
within the body of this rule. When jack is used
(invoked) within the body of some rule, an integer-
valued expression must be supplied as argument.

(3) Non-terminals may return results. For example, the
rule

george (result y:integer): body.
declares that george may be used in the body of a rule
where an integer value is required. Its value will be
the final value of variable y.

(4) Instead of terminals, which are an implicit input, we
shall have explicit input effected by

input — variable
We shall assume that this assigns the next character

PROGRAMMING WITH GRAMMARS: AN EXERCISE IN METHODOLOGY-DIRECTED LANGUAGE DESIGN

of input to the variable until finally it assigns the
special value — denoting end-of-file. Output is
effected by
output <—expression
We shall assume that the value of the expression is
printed appropriately.
(5) Some data types are:
(a) integer—as usual
(b) boolean—true and false
(c) character—e.g. ‘A’
(d) string—e.g. “ABC”
For integer i, character c, and string s,
“ > denotes the null string
s||c denotes the extension of s by ¢
s[i] denotes the ith character of s
#s denotes the length of s.

EXAMPLE OF METHOD

The programming method consists of two steps: write a
grammar, then embed processing in it. In this section we
illustrate the method, in the notation we have just given,
on our example problem. A grammar describing the
input is:

telestream: *telegram; endword.

telegram: + teleword; endword.

teleword: word # “Z7222Z”.

“endword: word = “ZZ7Z".

word (result w:string):
var c:character;
w=“";
*(input—c;c="");
+(input—>c;c# ¢ e # —;w=wllo);
input—c;(c="*"lc=).

Only the rules for telestream and telegram require
embedded processing.

telestream: output<“TELEGRAM ANALYSIS”;
*telegram; endword,,
output<—“END OF ANALYSIS”.
telegram: var wc, Iwc: integer, w: string;
we = 0; {word count}
Iwe = {longword count}
+(w = teleword,
(w # “STOP”; we = wc + 1;
(#w<12
| #w>12;
we'=Ilwc+1)
|w = “STOP”);
output <—w; output <**),
endword,;
output < “WORD COUNT:”;
output < wc;
output < “LONG WORD COUNT:”;
output < lwc.

Here we have used teleword as a string, so we must revise
its rule slightly.

teleword (result w:string): w = word; w # “ZZ77Z”.

The other rules remain unchanged.
Though we began with a grammar describing the
input, we could equally well have begun with a grammar

describing the output. In this example, the input and
output structures are compatible in that they can be
described together in one grammar. We now discuss
what to do when the input and output structures are
incompatible.

COMMUNICATING GRAMMARS

As stated earlier, some problems require several gram-
mars, one for each part of a solution. We shall illustrate
this shortly, but first we give a notation by which
grammars can communicate. In fact, we have already
used the notation, calling it input/output. A grammar
receives information (from another grammar) by the
notation

source — variable

where source is a local name, i.e. an identifier whose
meaning is local to the grammar in which it appears, that
identifies a source of information. A grammar sends
information (to another grammar) by the notation

destination < expression

where destination is a local name. (In our example, input
and output are local identifiers within the telestream
grammar that identify a source and a destination of
information. We have not yet hooked this grammar to
the outside world.)

A program is a collection of grammars together with a
communication graph. A communication graph is a set
of declarations, each of which connects a destination of
one grammar with a source of another. We use the
start/goal non-terminal of a grammar to identify the
grammar. For example, the declaration

Gl-out—G2-in
means that, within grammar G1, the statement
out<1

may be used to send the value 1 to grammar G2, within
which it may be received by the statement

in—v

and assigned to variable v. A grammar may have several
sources and several destinations for information. When
a grammar completes its execution, the special value —
is sent from it to all its destinations.

When considered as an undirected graph, whose nodes
are grammars and whose doubly-labelled edges represent
communication (ignoring the direction of communica-
tion), a communication graph must contain no cycles.
This constraint is easily checked by a compiler. It is
necessary (a weaker constraint cannot be stated inde-
pendent of the internal structure of the grammar) and
sufficient to guarantee that queues (buffers) are not
required and that deadlock is not possible.

When only one processor is available for execution,
the grammars act as co-routines, with the arrow notation
meaning ‘resume’. When there are as many processors as
grammars, the grammars may be executed concurrently
with the arrow meaning communication, and providing
synchronization. When the number of processors avail-
able is properly between 1 and the number of grammars,

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 279

E. C. R. HEHNER AND B. A. SILVERBERG

the implementation may be partly co-routine and partly
concurrent execution.

EXAMPLE OF METHOD, RESUMED

Our initial statement of the Telegram Problem had one
incomplete sentence so that our initial example would
require only a single grammar. We now complete the
sentence to give an example that requires two grammars.

This stream is available as a sequence of letters,
digits, and blanks on some device and can be
transferred in sections of predetermined size
into a buffer area where it is to be processed.

We shall assume that the device is a card reader, which
produces the next card (80-character string) of input,
until finally it produces the end of file mark —, just as a
grammar does. There is no structural relationship
between the telegrams and words on the one hand, and
the cards on the other; the former may be wholly within
a card, partly on one card and partly on the next, or even
spanning several cards.

A grammar describing the stream of cards is easily
written.

cardstream: var card: string;
*(reader — card; card # —);
reader—card; card = —.

For any two structures, there is always a common
substructure (if nothing else, the bit). For communication
between grammars, we usually choose the largest com-
mon substructure. In our example, both words and cards
are composed of characters, so that will be the unit of
communication from the cardstream to the telestream
grammar. Embedding the processing in our new grammar
is now easy.

cardstream: var card: string, i:integer;
*(reader—card;card # — ;i=1;
+(i<80;0ut<-cardlil;i=i+1);
i=81);

reader—card; card = — .
The communication graph contains
cardstream - out — telestream - input

plus two other declarations, one to link the card reader to
cardstream, and the other to link telestream to the printer.

If the intention of the problem is that a word cannot
continue across a card boundary, then a card boundary
acts as a blank. We need only insert out<* ’ after the
expression i = 81. In this case communication could have
been via the larger unit word.

CLASS OF GRAMMARS

In conventional programming languages, an alternative
construct (if . . . then. . . else, . . ., or case) is LL(1) in the
sense that the decision must be made at the beginning of
the alternatives, on the basis of one expression, which
alternative to execute. Dijkstra’s if guarded-command-
set fi construct* is non-deterministic in the sense that if

280 THE COMPUTER JOURNAL, VOL. 26, NO. 3, 1983

more than one guard is true, then any one of the
corresponding commands may be executed—each one
must be sufficient to establish the desired result. It is still,
however, LL(1) in our sense. The word ‘non-determinis-
tic’ is used more commonly (and less aptly) in parsing
theory to describe a grammar in which a particular
alternative may have to be chosen (the choice is not a
free one), but the choice cannot be made at the beginning
of the alternatives, or even at their end, or for an
unbounded distance following them. The usual single-
processor implementation is called ‘backtracking’. The
alternative construct of our notation allows non-deter-
minism in this sense.

There are classes of grammars between LL(1) and
context-free for which efficient parsers can be built. Ken
Day'? has designed an LR parser generator that accepts
those programs that are LALR(1) grammars, and
produces instructions (actually, tables) in which back-
tracking is never required. The decision among several
alternatives can be determined by their first point of
difference, or even by the first expression following the
alternatives.

In our telegram solution, the number of repetitions of
an iterative construct is sometimes determined by a
following expression. For example,

+(<80;S);i=81

when written recursively, has the form
R;i=81

where
R:(i<80;S5|i<80;S;R).

The choice between the alternatives of R is determined
by the expression i = 81 which follows R. That construct
is therefore LR(1).

CONCLUSION

The analogy between grammatical formalisms and
programming languages, between grammars and pro-
grams, between parser generators and compilers, is
complete. By thinking of grammars as programs, we
apply principles of language design that improve our
grammatical notations; and our programming languages
improve by using the structures developed for grammars.

The language we have (partly) described, based on a
context-free grammatical formalism that allows regular-
expression right sides with embedded predicates and
assignments, is higher-level than current programming
languages in the following sense. A programmer describes
the structure of his problem, i.e. the data structures and
associated processing, in one notation. He does not
describe data and processing structures separately, with
different notations for fundamentally similar structures.
He does not supply the uninteresting detail of the
algorithms to recognize the input data, the algorithm to
control and synchronize the processing, nor the algorithm
to generate output.

For a computation-oriented problem (with not much
data), a solution in our language is much like a solution
in a conventional programming language. The language

di

PROGRAMMING WITH GRAMMARS: AN EXERCISE IN METHODOLOGY-DIRECTED LANGUAGE DESIGN

stinguishes itself in more data-oriented problems,

design; rather, the language is an embodiment of a

where the grammatical basis can be used to advantage. methodology.
There, our solutions specify the data structures clearly
and concisely. This follows from the programming Acknowledgement
methodology we have chosen. And that is the main point: We gratefully acknowledge the critical reading of an early draft by
the methodology does not follow from the language David Elliott.
REFERENCES

. W. M. McKeeman, Language directed computer design. Proc.
AFIPS 1967 FJCC, Vol. 31, AFIPS Press, Montvale, N.J.,
pp. 413-417 (1967).

. D. B. Wortman, A study of language directed machine design.

Ph.D. Thesis, Stanford University, Palo Alto (1972).

E. C. R. Hehner, Computer design to minimize memory

requirements. Computer 9 (8), 65-70 (1976).

. E.W.Dijkstra, A Discipline of Programming, Prentice-Hall, New

Jersey (1976).

. M. A. Jackson, Principles of Program Design, Academic Press

(1975).

C. A. R. Hoare, Communicating sequential processes. Comm.

ACM 21(8), pp. 666-677 (1978).

. P. Henderson and R. Snowden, An experiment in structured

programming. B/T 12, 38-53 (1972).

. C. B. Jones, Software Development: a Rigorous Approach,

Prentice-Hall International, London (1980).
. D. L. Parnas, The use of precise specifications in the develop-

10.
11.
12.
13.
14.

15.

ment of software. 1977 IFIP Congress Proceedings, Vol. 7,
North Holland (1977).

R.E. Noonan, Structured programming and formal specification.
IEEE Trans Software Eng. SE-1 (4), 421-425 (1975).

W. M. McKeeman, Respecifying the telegram problem. Tech-
nical Report, University of California at Santa Cruz (1977).

C. H. A. Koster, Affix Grammars in ALGOL 68 Implementation,
edited by J. E. Peck, North Holland (1974).

D. A. Watt, The parsing problem for affix grammars. Acta
Informatica 8, 1-20 (1977).

D.E.Knuth, Semantics of context-free languages. Mathematical
Systems Theory 2, 127-145 (1968).

K. R. Day, Alegra: a language for expressing grammars and
algorithms. M.Sc. Thesis, Department of Computer Science,
University of Toronto (1982).

Received November 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 3,1983 281

