Volume 12, number 4

AN IMPLEMENTATION OF P AND V

Eric C.R. HEHNER

INFORMATION PROCESSING LETTERS

13 August 1981

Computer Systems Research Group, University of Toronto, Toronto M5S 1A1, Canada

R.K. SHYAMASUNDAR

National Centre of Software Development and Computing Techniques, Tata Institute of Fundamental Research,

Homi Bhabha Road, Bombay 400 005, India

Received October 1980; revised version received March 1981

Synchronization, mutual exclusion, concurrency, P and V

1. Introduction

The semaphore operations P and V are used for
synchronization and mutual exclusion of concurrent
processes. An implementation of P and V is offered,
with the following merits.

(1) It is very simple, and has a simple proof.

(2) No variable is written by more than one pro-
cess; thus each variable can be associated with the
process that writes it.

(3) If mutually exclusive access is granted to indi-
vidual variables, then mutually exclusive access will be

granted to critical regions properly enclosed by P and
V operations. No other requirement of atomicity is
made.

(4) The implementation cannot deadlock. This
remains true even if some processes fail. Failed pro-
cesses can be restarted outside their critical regions.

(5) If fair access is granted to individual variables,
then fair access is granted to critical regions properly
enclosed in P and V operations. No other queuing
assumption is made. >

The problem is artificial in the sense that we
assume it to be already solved on one level as a basis
for its solution on another; we assume non-deadlock-
ing mutually exclusive and fair access is granted to
individual variables in order to provide the same for
critical regions of processes. The problem is non-
trivial, however, and is something of a classic, being
posed as early as 1962. Its first published solution is

196

[1]. The present solution is offered both for its sim-
plicity and for the style of presentation.

2. Implementation

The implementation requires, for each semaphore
s, an array A of variables such that

(a) there is one element of A for each process;

(b) all elements of A can be read by all processes;

(c) only process i sets A[i];

(d) reading and writing an element of A are con-
sidered atomic; these are the only actions considered
atomic;

(e) the values of elements of A are non-negative
integers, adjoined by a special value e such that
Vi € integers: i < oo :

(f) the initial values of A are .

Number the processes arbitrarily from 1 to N.
Then P(s) in the it" process becomes

Ali] :=0;
A[i]:= 1 + FINITEMAX(A);
forj:=1to Ndo

while G(i, j) do skip od
od

and V(s) in the i*? process becomes
Al ssee!

where j is a fresh Jocal variable, and G (mnemonic for

0020-0190/81/0000—0000/$02.50 ©® 1981 North-Holland



Volume 12, number 4

“oreater than”’) is defined as
GG.j)=(All] >A[D) v(Alil = Al Ai>]),
and FINITEMAX(A) is

fm :=0;
forj:=1toNdo

aj := A[j];

if fm < aj A aj <o then fm := aj fi
od

with result fm, where fm, j, and aj are local variables.

Our implementation of P and V is a version of
Lamport’s bakery algorithm [2], in which a customer
wishing service takes a number to represent his place
in a queue. Because “takinga number”, i.e. the assign-
ment “A[i] :=1 + FINITEMAX(A)” is not a mutually
exclusive activity, it is possible for two processes to
take the same number;in that case, the lower-num-
bered process is deemed to have priority. The boolean
G(i, j) has the informal meaning “process j currently
has priority over processi”.

3. Verification

Our proof technique is that of Gries and Owicki
[3].

To prove that this provides mutually exclusive
access to critical regions, we introduce auxiliary
boolean variables B[m, n] such that

I: (vm,n) B[m,n] V—~G(m,n) v A[n] =0

is invariantly true. The B[m, n] are initially true.
Now “P(s); CRITICAL-REGION; V(s)” becomes

1) Afi] :=0;
(2) ai:=1+FINITEMAX(A);
(3) Ali] :=ai;
(4) forj:=1toNdo
5) while G(i, j) do skip od;
(6) B[i, j] := false
(7) od;
(8) CRITICAL-REGION;
(9) forj:=1toNdo
(10) B[i,j] := true
(11) od;
(12) A[i] :=c-.

Note. Because the Bli, j] are only assigned and

INFORMATION PROCESSING LETTERS

13 August 1981

never used, they may be removed without changing
the values of variables or flow of control. Therefore
this program is equivalent to the former program.

To prove that I is invariant, we must check that it
is true initially (obvious), and that assignments to A
and B leave it true.

Line 1 establishes A[i] = 0. From the definition of
G we see that it also establishes (Vj) —=G(1, j) v A[j] =
0. Checking the two cases m =i and n = i we see that
I is maintained.

Line 3 increases A[i] at a time when (Vj) B[i, j].
For m = i, it is the latter fact that maintains I; for
n = i it is the former fact, since G(m, n) cannot be
changed from false to true.

On line 6, consider that “Bl[i, j] := false’ is per-
formed at the same instant that G(i, j) is discovered
to be false on line 5. Then it is obvious that I is main-
tained.

Note. It does not matter that we have no mecha-
nism to perform the assignment at that instant, since
B[i, j] does not appear in the original program.

Line 10 obviously maintains I.

For line 12, for m =i we have B[m, n] (from Lines
9—11), and for n = i we have —G(m, n).

We now prove mutual exclusion from critical
regions. If process i is in its critical region, then
Ali] #0 A (Vj) =B[i, j]. Choosing a particular j, we
may say A[i] #0 A —Bl[i, j]. If this process j is also
in its critical region, we have A[j] #0 A —BJ[j, i].
Rearranging, (=B[i, j] A A[j] #0) A (—B[j,i] A A[i] #
0). Using the invariant I with each of the major con-
juncts, we find —G(i, j) A —G(j, i). But because G is
antisymmetric, we must conclude i = j. Therefore two
different processes cannot both be in their critical
regions at the same time.

We now prove that there is no deadlock. Process i
can be delayed only by the truth of G(i, j). But
because G is transitive and irreflexive, no cycle of
delayed processes can exist. Therefore there is no
deadlock. The failure of process i will not deadlock
the system if the following are enforced;

(a) upon failure, A[i] := > is executed;

(b) during down-time, A [i] must remain accessible
to other processes;

(c) process i must not be restarted within a
sequence “P(s); CRITICAL-REGION; V(s)”.

We now prove that this implementation of P and
V is fair. This means that no process j can enter a

197



Volume 12, number 4

critical region twice while a process i waits to enter a
critical region once. To suppose the contrary is to
suppose that

(a) A[i] is finite and unchanging;

(b) at least once, “A[j] :=1 + FINITEMAX(A)” is
executed and subsequently G(j, i) is found to be false.
The contradiction is apparent.

4. Discussion

We have proven that our implementation has the
merits listed in the Introduction. Our implementa-
tion also has the following demerits.

(1) There is no bound on the values of the ele-
ments of A. Whenever there is no process in or wait-
ing to enter its critical region, the values of the ele-
ments of A for subsequent processes entering critical
regions will begin again at 1;in practice then, this
demerit may not be a problem. But there is no guar-
antee against an arbitrarily long run of values. The
second author has an implementation without this
demerit, giving up only a little of merits 1 and 3
(expression evaluation must be atomic to achieve
mutual exclusion).

(2) Process i performing P(s) can be delayed by
process j performing P(s) even if process i precedes
process j. This occurs when process j is computing the
time-consuming function FINITEMAX. This demerit
can be lessened, at the expense of merit 2, by intro-
ducing global variable CTR, initially 0, and replacing
“Ali] :=1+ FINITEMAX(A)” by “CTR :=CTR + 1;
Al[i] :=CTR”.

The number of processes can change, as long as an
unused process number i satisfies A[i] = oo, exactly as
for a failed process. Alternatively, the algorithm can

198

INFORMATION PROCESSING LETTERS

13 August 1981

be modified from “forj := 1 to N” to “for j € { cur-
rent process numbers}” if a means of implementing
this change is available.

Acknowledgement

We thank Nigel Horspool, Edsger Dijkstra and
David Gries for pointing out an error, and Jim Horning
for criticism.

References

[1] E.W. Dijkstra, Solution of a problem in concurrent pro-
gramming control, Comm. ACM 8 (9) (1965).

[2] L. Lamport, A new solution of Dijkstra’s concurrent
programming problem, Comm. ACM 17 (8) (1974)
453—-455.

[3] S.S. Owicki and D. Gries, An axiomatic proof technique
for parallel programs, Acta Inform. 6 (1976) 319—340.

Addendum

After submission of this paper, a paper by Ricart
and Agrawala titled “An Optimal Algorithm for
Mutual Exclusion in Computer Networks” appeared
in Comm. ACM 24 (1) (1981). Their paper contains
an algorithm similar to the one suggested in point 2
of our Discussion, but using network terminology. In
contrast to our proof, their “proof” is long and
incomplete; they argue from examples of possible
situations, and diagrams with three processes. They
do, however, make points that we do not, particularly
about optimality.



