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ProTem
Eric Hehner

ProTem is a programming system that serves as both programming language and operating system, 
and includes a theorem prover to check each step of program composition.  This document is an 
informal specification of ProTem.  Formal specifications of the data types and program semantics 
can be found in the book a Practical Theory of Programming (with syntactic differences).  
“ProTem” also means “for now”, short for the Latin words “pro tempore”.

Programming languages and operating system languages have a lot of functionality in common, but 
differ greatly in syntax and terminology.  These differences are historical, accidental, and 
unnecessary.  They complicate a programmer's life with no benefit.  For example, a file is just a 
variable;  file update and storage are just assignment.  By unifying the programming language and 
the operating system commands, both gain in functionality.  Communication channels and file piping 
are as useful in programming as they are in operating systems.  Directories are useful in large-scale 
multi-programmer programs.  Conditional execution ( if ) and indexed loops ( for ) are useful 
operating system commands.

ProTem is also designed for easy proof of correctness, including functionality, time requirements, 
and space requirements.  To that end, loops can be constructed by labeling any block of code with a 
specification, and then using the specification within the block of code.  For example,

« n≥0 ⇒ nʹ=0 » ⟦if n>0 ⟦n:= n–1.  « n≥0 ⇒ nʹ=0 »⟧⟧
The proof methods are the subject of the book a Practical Theory of Programming and paper 
Specified Blocks.  They do not require preconditions, postconditions, invariants, or variants.  If proof 
is not wanted, then an ordinary name can be used as label.  For example,

loop ⟦if n>0 ⟦n:= n–1.  loop⟧⟧

A primary design criterion is to make ProTem a small, easy-to-learn, easy-to-use language.  The size 
of a language can be measured by the number of symbols and by the complexity of grammar 
structure, which can be measured by the number of nonterminals.  ProTem has 8 keywords.  (Python 
has 35, C has 36, Pascal has 36, Haskell has 37, Ada has 62, MS Basic has 205.)  ProTem is 
presented by a Presentation Grammar, which has just the structure that a programmer needs to know, 
not all the structure that a compiler needs.  It has 2 nonterminals (program and data) plus some 
informally defined kinds of names.  (There is also an LL(1) grammar with 25 nonterminals and an 
LR(0) grammar with 14 nonterminals at the end of this document.  For comparison, the Haskell 
grammar has 68 nonterminals, and the Python grammar has 87 nonterminals.)  The design ethos 
demands an extremely good reason for adding a new feature to ProTem that requires a new keyword 
or syntax.  That same design ethos will not tolerate any addition to the 2 nonterminals in the 
Presentation Grammar.

To judge ease of use, you need to use the language, but you may get a sense of the ease of use (and 
of the beauty of the language, if that is of interest) from reading example programs.  For that 
purpose, there are example programs near the end of this document.

The design of ProTem is complete except for the following.  I need to describe and compose picture 
and sound elements.  I need to define touchpad and touchscreen gestures.  I may need to define 
regions of documents to be clickable links.

An implementation of ProTem, written in ProTem, is partially complete. 

http://www.cs.utoronto.ca/~hehner
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/SB.pdf
http://www.cs.utoronto.ca/~hehner/PTI.pdf
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As you read this document the first time, you will encounter language constructs that have not been 
defined yet.  This document has been written to minimize the problem, but due to the highly 
mutually recursive nature of the language constructs, there is no linear order that completely avoids 
the problem.  (The same was true of the ALGOL-60 report, and every decent programming language 
document since.)  When you encounter a not-yet-explained language construct, understand whatever 
you can about it, but do not be stopped by it.  During the second and subsequent readings of this 
document, all language constructs fall into place.

I am perfectly well aware that “data” is a Latin word;  it is the plural gerund from the verb “dare”, 
which means “to give”, so the data are the givens.  The singular is “datum”.  But this is an English 
document, and I have decided to use the word “data” for both singular and plural.  I have also 
decided to say “indexes” rather than “indices”. 
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Symbols

ProTem has 8 keywords, plus 4 kinds of lexeme, and 71 other symbols;  altogether they are:
case  else  for  if  new  old  plan  value
number   text   name   comment
“  ”  «  »  `  ‘  ,  ,..  ;  ;;  ;..  .  !  ?  ??  :  ::  :=  =  ≠  <  >  ≤  ≥  _  #  #1  \  |  ||  ∞  &  %  ⊤  ⊥
+  –  ×  /  →  ↔  ∧  ∨  ^  ^^  @  *  ~    ¢  $  ∈  ☐  ⊲  ⊳  ⊨  ⫤  (  )  { }  [  ]  〈  〉  (|  |)  ⟦  ⟧  (:  :)

Keywords and multicharacter symbols cannot have spaces between the characters.

Some of the ProTem symbols may not be on your keyboard.  Here are the substitutes.
for “ use " for ” use " for « use << for » use >>
for ‘ use ' for ≠ use /= for ≤ use <= for ≥ use >=
for – use - for × use >< for → use -> for ↔ use <>
for ∧ use / \ for ∨ use \ / for  use // for ∈ use :~
for ⊲ use <| for ⊳ use |> for (: use (: for :) use :)
for ⊨ use |= for ⫤ use =| for 〈 use <: for 〉 use :>
for (| use (| for |) use |) for ⟦ use [| for ⟧ use |] 
for ☐ use [] for ∞ use infinity for ⊤ use true for ⊥ use false

The names  infinity ,  true , and   false  are predefined, and redefinable.

A number is formed as one or more decimal digits, with an optional decimal point between digits.  A 
decimal point must have at least one digit on each side of it.  Commas and spaces between digits are 
not allowed.  Here are four examples.

0     275     27.5     0.21

A text begins with a left-double-quote, continues with any number of any characters, and ends with a 
right-double-quote.  Within a text, a double-quote (left or right) must be underlined or written twice.  
Characters within a text are not limited to any alphabet.  Here are six examples.

“”          “abc”         “don't”         “Just say “no”.”         “Just say ““no””.”         “♠ ♣ ♥ ♦ ”

A name is either simple or compound.  A simple name is either plain or fancy.  A plain simple name 
begins with a letter from an alphabet (this document uses the 26 small italic and 26 capital italic 
letters of the English alphabet), and continues with any number of letters and decimal digits, except 
that keywords cannot be names.  A fancy simple name begins with  « , continues with any number of 
any characters, and ends with  » .  Within a fancy simple name, a  «  or  »  must be underlined or 
written twice.  Characters within a fancy simple name are not limited to any alphabet.  A compound 
name is composed of two or more simple names joined with backslash  \  characters.  For examples:

plain simple names:   x   A123   refStack
fancy simple names:   «Rick & Margaret»   « xʹ ≥ x »   «left«center»right»
compound names:   ProTem\grammars\LL1   CS\«grad recruiting»\«2016-9-8»   

At each point in a program, a name is one of
newname: a simple name that is not defined in the current scope,

or a compound name that is not defined in its dictionary in the current scope.
oldname: a simple name that is defined in the current scope,

or a compound name that is defined in its dictionary in the current scope.
An oldname is defined as one of:  variablename, constantname, dataname, 

programname, channelname, unitname, or dictionaryname.

A comment begins with  `  and ends at the end of the line.  Characters within a comment are not 
limited to any alphabet.  For example:  ` I❤ ProTem 
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Presentation Grammar

ProTem will be explained in complete detail in the following sections.  In this section, for reference, 
we present the grammar.  There are 36 ways of forming a program, all listed in the left column.  
There are a few words of explanation in the right column.
new newname : data := data define variablename with type and initial value
new newname := data define constantname and evaluate data
new newname (| data |) define dataname but do not evaluate data
new newname ⟦ program ⟧ define programname but do not execute program
new newname ? data ! data define channelname with type and initial value
new newname #1 define measuring unitname
new newname \ define dictionaryname
new newname \ \ dictionaryname define dictionaryname with definitions
new newname oldname define synonym
new newname forward definition of dataname or programname
old oldname undefine, remove, or hide
variablename := data assign variable to value
channelname ! data to channel send output
channelname ? data (: data :) data from channel receive input in this pattern
channelname ? data (: data :) data ! channelname from channel receive input in this pattern and echo
channelname ? ! channelname from channel receive input in default pattern and echo
simplename ⟦ program ⟧ define programname and execute program
programname execute (call) named-program
program . program sequential composition
program || program concurrent composition
if data ⟦ program ⟧ if-program
if data ⟦ program ⟧ else ⟦ program ⟧ if-else-program
case data ⟦ program ⟧ case-program
case data ⟦ program ⟧ else ⟦ program ⟧ case-else-program
program ⟧ ⟦ program case separator in a case-program or case-else-program
for simplename : data ⟦ program ⟧ for-program, index is constantname
plan simplename : data ⟦ program ⟧ plan, parameter is constantname
plan simplename := data ⟦ program ⟧ plan, parameter is variablename
plan simplename ! data ⟦ program ⟧ plan, parameter is output channelname
plan simplename ? data ⟦ program ⟧ plan, parameter is input channelname
plan simplename \ ⟦ program ⟧ plan, parameter is dictionaryname
program data plan, data argument
program variablename plan, variable argument
program channelname plan, channel argument
program dictionaryname plan, dictionary argument
⟦ program ⟧ scope, program brackets

There are 60 ways of expressing data.  Examples and pronunciations are shown on the right side.
number 0     1.2
∞ infinity, the infinite number
data & data complex number   x&y  =  x + i×y
data % percentage   x% = x/100
+ data plus, identity
– data minus, negation, not
data + data plus, addition
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data – data minus, subtraction
data × data times, multiplication
data / data divided by, division
data ^ data to the power, exponentiation
data ^^ data scale, scientific notation  x^^y  =  x × 10^y
⊤ top, true
⊥ bottom, false
data ∧ data minimum, conjunction, and, set intersection
data ∨ data maximum, disjunction, or, set union
data = data equals, equation
data ≠ data not equals, differs from, exclusive or
data < data less than, strict implication, strict subset
data > data greater than, strict reverse implication, strict superset
data ≤ data less than or equal to, implication, subset
data ≥ data greater than or equal to, reverse implication, superset
data , data bunch union   (0, 2), (2, 5)  =  0, 2, 5
data ,.. data bunch from (including) to (excluding)  0,..3 = 0,1,2
data ‘ data bunch intersection   (0, 2, 5) ‘ (2, 5, 9)  =  2, 5
data : data bunch inclusion   2, 5:  0, 2, 5, 9
data :: data reverse bunch inclusion   0, 2, 5, 9:: 2, 5
¢ data bunch size, bunch cardinality   ¢(0,..5)  =  5
{ data } set   {0, 2, 5}    {0,..5}   set brackets
~ data contents of a set or list   ~{0, 2, 5}  =  0, 2, 5
$ data set size, set cardinality   ${0, 2, 5} = 3
data ∈ data elements of a set   2, 3 ∈ {0, 2, 3, 5}
 data power   (0, 1)  =   {null}, {0}, {1}, {0, 1} 

text “”     “abc”     “Just say “no”.”
data ; data string join   0; 2; 5
data ;.. data string from (including) to (excluding)  0;..3 = 0;1;2
data _ data string indexing   (2; 3; 7; 3)_2  =  7
data ⊲ data ⊳ data string modification   3; 4; 5 ⊲1⊳6  =  3; 6; 5
↔ data string length   ↔(2; 3; 7; 3) = 4
data * data definite repetition   3*2  =  2; 2; 2
* data indefinite repetition   *2  =  nat*2
[ data ] list   [3; 6; 5]   list brackets
data ;; data list join   [3; 6];;[7; 4]  =  [3; 6; 7; 4]
# data list length, function size   #[2; 3; 7; 3]  =  4
data data list index, function argument, composition   f x
data @ data pointer indexing  L@(i; j)  =  L i j
〈 simplename : data . data 〉 function, parameter is constantname  〈n: nat.  n+1〉
data → data function, function space   nat→bin = 〈n: nat.  bin〉
☐ data domain of a list or function  ☐〈n: nat.  n+1〉  =  nat
data | data selective union    2→8 | [3; 6; 7; 4]  =  [3; 6; 8; 4]
variablename variable name
constantname constant name
dataname data name and evaluate data
channelname ? the most recent data read on the channel
channelname ?? test for written but unread data on the channel
unitname unit name, positive finite real number constant
data ⊨ data ⫤ data conditional data, if data then data else data
simplename (| data |) named-data, defines dataname, data brackets
value simplename : data := data ⟦ program ⟧ value-data, defines variablename
( data ) evaluation brackets 
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Order of Execution and Evaluation

Here is the order of execution of the forms of program.
0 new    old    :=    !    ?    programname    plan    if    case    for    ⟦ ⟧
1 plan argument left-to-right
2 ||
3 .
Program brackets  ⟦ ⟧  can always be used to change the order of execution.

Here is the order of evaluation of the forms of data.
0 number   text   name   ⊤   ⊥   ∞   ( )   [ ]   { }   〈 〉   (| |)   (: :)   value
1 list index        function argument        postfix  %  ?  ??        infix  _  @  & left-to-right
2 prefix  +  –  ¢  $  ↔  #  ~    ☐  *        infix  *  →  ^  ^^ right-to-left
3 infix   ×   /   ∧   ∨ left-to-right
4 infix   +   –   ;;   ;   ;..   ‘ left-to-right
5 infix   ,   ,..   |   ⊲⊳ left-to-right
6 infix   =   ≠   <   >   ≤   ≥   :   ::   ∈ continuing
7 infix   ⊨ ⫤ right-to-left
Evaluation brackets  ( )  can always be used to change the order of evaluation.

On level 6, the operators are “continuing”;  this means, for example, that  a=b=c  neither associates 
to the left  (a=b)=c  nor associates to the right  a=(b=c) , but means  (a=b)∧(b=c) .  Similarly  
a<b=c≤d  means  (a<b)∧(b=c)∧(c≤d) .

Using ProTem

Following the prompt  ➮ , key in a program.  As you do so, keywords become bold, plain names 
become italic, and keyboard substitutes become the proper symbols.  A program may stretch over 
many lines, including spaces, tabs, and new line characters between symbols.  You may make 
changes to a program using the delete (backspace) key and standard cut/copy/paste editing 
commands.  When you are finished, send the  end  character, either by pressing the escape key, or by 
pressing  ctl . , which is the simultaneous combination of the control key and the period (point) key.  
Then the program is checked for errors;  if there are errors, you are told what the errors are, and 
invited to correct them;  if there are no errors, your program is executed.  For example, following the 
prompt  ➮ , you can key in

! 2+2
The  !  means output to the screen (see Output and Input).  Then send  end .  Since there are no 
errors, the program is executed, causing  4  to be printed on the screen.  Thus ProTem can be used as 
a calculator.

As we will see in Constant Definition, the program
new temp:= 2+2

followed by  end , saves the result of the calculation  2+2  under the name  temp , perhaps for use in 
further calculation.  As we will see in Program Definition, the program

new myprogram ⟦! “2+2=”; temp⟧
followed by  end , defines and saves a program named  myprogram .  The saved program is not 
immediately executed.  To execute this saved program, key in

myprogram
followed by  end .  Saved definitions can be edited using the command  ctl e  (see Edit). 
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Data

The basic data are numbers, characters, and binary values.  The data structures are bunches, sets, 
strings, and lists.  Also, there are conditional data, functions, named-data, and value-data.

Numbers

Numbers are not divided into disjoint types.  A natural number is an integer number;  an integer 
number is a rational number;  a rational number is a real number;  a real number is a complex 
number.  There is also an infinite number  ∞ , greater than all other numbers, and  –∞ , less than all 
other numbers, included in the reals.

The one-operand postfix operator  %  means division by  100 ;  for examples,  99.9% ,  x% , and  
(x+y)% .  There are two one-operand prefix operators  +  and  – .  There are nine two-operand infix 
operators  + – × / ^ ^^ ∧  ∨  & .  Division of integers, such as  1/2 , may produce a noninteger.  
Exponentiation is 2-operand infix  ^ ;  for example,  1.2×10^3  (one point two times ten to the power 
three), which can be written more briefly as  1.2^^3 , and in general,  x^^y = x×10^y .  The operator  
∧  is minimum (arms down, does not hold water;  note that  ^  and  ∧  are different).  The operator  ∨  
is maximum (arms up, holds water).  In addition to the number symbols, there are predefined names 
of numbers such as  pi  (the ratio of a circle's circumference to its diameter),  e  (the base of the 
natural logarithms),   and  i  (the imaginary unit, a square root of  –1 ).  The complex number  x + i×y  
can be written more briefly as  x&y .  There are predefined function names such as  abs, arc, arccos, 
arcsin, arctan, ceil, cos, cosh, div, exp, floor, im, lb, ln, log, mod, rand\Int, rand\Real, re, round, sin, 
sinh, sqrt, tan, and tanh  (see Predefined Names).  Predefined names can be redefined.

Characters

A character is a text of length  1 .  We leave it to each implementation to list the characters, and to 
state their order.  In addition to the character symbols such as  “a”  (small a) and  “  ”  (space), there 
are some predefined character names:  delete  (backspace),  tab ,  nl  (new line, next line, return, 
enter),  click ,  doubleclick , and  end .  The  end  character is invisible and takes no space;  it is 
sometimes useful as a sentinel at the end of a text.  Predefined functions  suc  and  pre  give the 
successor and predecessor in the character order;  “ ”  (space) comes first and  end  comes last.  
Predefined functions  charnat  and  natchar  map between characters and their (possibly extended 
ASCII or unicode) numeric encodings.  Some key combinations, such as  ctl .  and  ctl e , are 
characters and have numeric encodings.

Binary Values

The two binary values are  ⊤  and  ⊥ .  Negation is  – , conjunction (minimum) is  ∧ , disjunction 
(maximum) is  ∨ .  The infix two-operand operators  =  and  ≠  apply to all data in ProTem with a 
binary result;  the two operands may even be of different types.

The order operators  < > ≤ ≥  apply to real numbers (including rationals, integers, and naturals), to 
characters, to binary values, to sets (subset, superset), to strings of ordered items lexicographically, 
and to lists of ordered items lexicographically, with a binary result.  In the binary order,  ⊥  is below  
⊤ , so  ≤  is implication.

The postfix operator  ??  applies to channels, and has a binary result saying whether there is written 
but unread data on the channel. 
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Bunches

Any number, character, binary value, set, string of elements, and list of elements is an elementary 
bunch, or synonymously, an element.  For example, the number  2  is an elementary bunch, or 
element.  Every data expression is a bunch expression, though not all are elementary.

Bunch union is denoted by a comma:
A , B A  union  B

For example,
2, 3, 5, 7

is a bunch of four integers.  There is also the notation
x,..y x  to  y

where  x  and  y  are integers or  ∞  or  characters that satisfy  x≤y .  Note that  x  is included and  y  is 
excluded.  For example,  0,..3  consists of the first three natural numbers  0,1,2 , and  5,..5  is the 
empty bunch  null .

For any  A  and  B ,
A: B A  is included in  B
A:: B A  includes  B

are binary.  The size (or cardinality) of  A  is  ¢A .  For examples,  ¢null = 0 ,  ¢0 = 1 ,  ¢(0, 1) = 2 ,  
and  ¢(a,..b) = b–a .  The evaluation brackets  ( )  are needed for the order of data evaluation.  
Bunches are equal if and only if they include the same elements, ignoring order and multiplicity.

Bunches serve as a type structure in ProTem, as the contents of sets, and other uses.  There are 
several predefined bunch names:

null the empty bunch
nat all natural numbers.  Examples:  0  1  2
int all integer numbers.  Examples:  –2  –1  0  1  2
rat all rational numbers.  Examples:  1/2  3.4
real all real numbers. Example:  2^(1/2)  =  1.4142, –1.4142 approximately
com all complex numbers.  Examples:  (–1)^(1/2) = i, –i   3&4 = 3+4×i
char all characters.  Examples:  “a”  “ ”  ““”  delete  nl  end
bin both binary values:  ⊤, ⊥
text all texts (character strings).  Examples:  “abc”  “Say “hi”.”
ord the ordered type for which  ∧  ∨  <  >  ≤  ≥  are defined
all all ProTem data values

In ProTem, all operators that come before bunch union in the order of evaluation, except  ¢  and   , 
distribute over bunch union.  Infix  *  distributes in its left operand only.  For examples,

–(3, 5)  =  –3, –5
(2, 3)+(4, 5)  =  6, 7, 8

This makes it easy to express the plural naturals  nat+2 , the even naturals  nat×2 , the square 
naturals  nat^2 , the natural powers of two  2^nat , and many other things.

Sets

A set is formed by enclosing a bunch in set brackets.  For examples,  {0, 2, 5} ,  {0,..100} ,  {null} ,  
{nat} .  The inverse of set formation is the content operator  ~ .  For example,  ~{0, 1} = 0,1 .  The 
size (or cardinality) of a set, traditionally written  |S| , is  $S  in ProTem.  For examples,  ${0, 1} = 2 ,  
${null} = 0 , and  ${nat} = ∞ .  The element relation is  x∈S .  For example,  1, 2 ∈ {0, 1, 2, 3} .  The 
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union operator, traditionally  ∪ , is  ∨  in ProTem.  The intersection operator, traditionally  ∩ , is  ∧ .  
Subset, traditionally  ⊆ , is  ≤ ;  strict subset is  < ;  superset is  ≥ ;  strict superset is  > .  The power 
operator    takes a bunch as operand and produces the bunch of all sets that contain only elements of 
the operand.  For example,  (0, 1) = {null}, {0}, {1}, {0, 1} .  In  (0, 1) , the evaluation brackets  ( )  
are needed due to the order of data evaluation.

Strings

There is a predefined string name:
nil the empty string

Any number, character, binary value, set, list, and function is a one-item string, or synonymously, an 
item.  For example, the number  2  is a one-item string, or item.

String join is denoted by a semi-colon:
S ; T S  join  T

For example,
2; 3; 5; 7

is a string of four integers.  There is also the notation
x;..y x  to  y  (same pronunciation as  x,..y )

where  x  and  y  are integers or  ∞  or characters that satisfy  x≤y .  Again,  x  is included and  y  is 
excluded.  For examples,  0;..3 = 0;1;2  and  5;..5 = nil .

The length of a string is obtained by the  ↔   operator.  For examples,  ↔nil = 0 ,  ↔2 = 1 ,        
↔(2; 3; 5; 7) = 4 , and  ↔(x;..y) = y–x .  The evaluation brackets  ( )  are needed for the order of data 
evaluation.

A string is indexed by the  _  operator.  Indexing is from  0 .  For example,  (2; 3; 5; 7)_2 = 5 .  A 
string can be indexed by a string.  For example,  (3; 5; 7; 9)_(2; 1; 2)  =  7; 5; 7 .

If  S  is a string and  n  is an index of  S  and  i  is any item, then  S⊲n⊳i  is a string like  S  except 
that item  n  is  i .  For example,   3; 5; 9 ⊲2⊳8  =  3; 5; 8 .  This operator associates from left to 
right, so 3; 5; 9 ⊲2⊳8⊲1⊳7  =  ((3; 5; 9)⊲2⊳8)⊲1⊳7  =  (3; 5; 8)⊲1⊳7  =  3; 7; 8 .  And
3; 5; 9 ⊲2⊳8⊲2⊳7  =  ((3; 5; 9)⊲2⊳8)⊲2⊳7  =  (3; 5; 8)⊲2⊳7  =  3; 5; 7 .

A text is a more convenient notation for a string of characters.
“abc”  =  “a”; “b”; “c”
“He said “Hi”.”  =  “H”; “e”; “ ”; “s”; “a”; “i”; “d”; “ ”; ““”; “H”; “i”; “””; “.”
“abcdefghij”_(3;..6)  =  “def”

Strings are equal if and only if they have the same length, and corresponding items are equal.  They 
are ordered lexicographically.  For examples,

3; 5  <  3; 5; 2  <  3; 6
(3; 5)∨(3; 5; 2)  =  3; 5; 2

A bunch of items is an item.  Join distributes over bunch union, so
(3, 4); (5, 6)  =  3;5,  3;6,  4;5,  4;6

A string is an element (elementary bunch) if and only if all its items are elements.

If  S  is a string and  n  is a natural number, then
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n * S n  copies of  S , or  n S 's
is a string, and

* S strings of  S , or  any number of S 's
is a bunch of strings.  For examples,

3*5  =  5;5;5
3*(4, 5)  =  4;4;4,  4;4;5,  4;5;4,  4;5;5  5;4;4,  5;4;5,  5;5;4,  5;5;5
*5  =  nil,  5,  5;5,  5;5;5,  5;5;5;5,  and so on

The  *  operator distributes over bunch union in its left operand only.
null*5  =  null
(2,3)*5  =  2*5,  3*5   =   5;5,  5;5;5

Using this semi-distributivity, we have
*a  =  nat*a

Lists

A list is a packaged string.  It can be written as a string enclosed in list brackets.  For example,
[0; 1; 2]

Let  L  and  M  be lists, let  n  be a natural number, and let  p  be a string of natural numbers.  The list 
operators are:

☐ L domain of  L
~ L content of  L
# L length of  L
L n L  at  n ,  L  at index  n
L @ p L  at  p ,  L  at pointer  p
L ;; M L  join  M
L M L  composed with  M
L | M L  otherwise  M , the selective union of  L  and  M
i → x | L index  i  is item  x  and otherwise  L

plus the operators  L∧M ,  L∨M ,  L=M ,  L≠M ,  L<M ,  L>M ,  L≤M ,  L≥M .  For examples,
☐[10; 11; 12]  =  0, 1, 2 the domain of a list
~[10; 11; 12]  =  10; 11; 12 the content of a list
#[10; 11; 12]  =  3 the length of, or number of items in, a list
[10;..20] 5  =  15 indexing starts at zero
[[2; 3]; 4; [5; [6; 7]]] @ (2; 1; 0)  =  6
[0;..10];;[10;..20]  =  [0;..20] joining lists
[10;..20] [3; 6; 5]  =  [13; 16; 15] composition  (L M)n = L(M n)

By using the  @  operator, a string acts as a pointer to select an item from within an irregular 
structure.  If the list  L | M  is indexed with  n , the result is either  L n  or  M n  depending on 
whether  n  is in the domain (0,..#L) of  L .  If it is, the result is  L n , otherwise the result is  M n .

[10; 11] | [0;..10]  =  [10; 11; (2;..10)]
1→21 | [10; 11; 12]  =  [10; 21; 12]

The index can be a string, as in
(0;1) → 6 | [[0; 1; 2]; [3; 4; 5]]  =  [[0; 6; 2]; [3; 4; 5]]

When a string or list is indexed by a structure, the result has the same structure as the index.
(10;..20) _ [2; (3, 4); [5; [6; 7]]]  =  [12; (13, 14); [15; [16; 17]]]
[10;..20] [2; (3, 4); [5; [6; 7]]]  =  [12; (13, 14); [15; [16; 17]]]

Let  S = 10; 11; 12 .  Then
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S_(0, {1, [2; 1]; 0})
= S_0, {S_1, [S_2; S_1]; S_0}
= 10, {11, [12; 11]; 10}

Let  L = [10; 11; 12] .  Then
L (0, {1, [2; 1]; 0})

= L 0, {L 1, [L 2; L 1]; L 0}
= 10, {11, [12; 11]; 10}

Lists are equal if and only if they have the same length and corresponding items are equal.  They are 
ordered lexicographically.  For examples,

[3; 5] < [3; 5; 2] < [3; 6]
[3; 5]∨[3; 5; 2]  =  [3; 5; 2]

The list brackets  [ ]  distribute over bunch union.  For example,
[0, 1]  =  [0], [1]

Thus  [10*nat]  is all lists of length 10 whose items are natural, and  [4*[6*real]]  is all 4 by 6 arrays 
of reals.

Conditional Data

The 3-operand expression  x ⊨ y ⫤ z , pronounced “if  x  then  y  else  z ”, has binary operand  x , but  
y  and  z  are of arbitrary type.  For example,

y≠0 ⊨ x/y ⫤ “nan”
If  y≠0  has value  ⊤ , then this data expression has number value  x/y .  If  y≠0  has value  ⊥ , then 
this data expression has text value  “nan” .  This operator associates from right to left.  For example,

(a ⊨ b ⫤ c ⊨ d ⫤ e)   =   (a ⊨ b ⫤ (c ⊨ d ⫤ e))
If  a  has value  ⊤ , then this expression has value  b , with no need to evaluate  c ,  d , or  e .  If  a  
has value  ⊥ , there is no need to evaluate  b .

Functions

A function defines a parameter;  that is its only job.  Let  p  (parameter) be any simple name, let  D  
(domain) be any data expression (but not using  p ), and let  B  (body) be any data expression 
(possibly using  p  as a constant name for an element of  D ).  Then  〈p: D. B〉  is a function with 
parameter  p , domain  D , and body  B .  For example, 

〈n: nat.  n+1〉 map  n  in  nat  to  n+1
is the successor function on the natural numbers.  The parameter name begins its scope at the left 
function bracket  〈  and ends its scope at the right function bracket  〉  (see Scope).  Consequently, the 
parameter name can be any simple name, even one that has already been defined in the scope that 
encloses the function.  The  ☐  operator gives the domain of a function.  For example,

☐〈n: nat.  n+1〉  =  nat
The  #  operator gives the size of the function, which is the size of its domain.  For examples,

#〈n: 0,..10.  n+1〉  =  10
#〈n: nat.  n+1〉  =  ∞

A function of  n+1  parameters is a function of  1  parameter whose body is a function of  n  
parameters.  For example, the average function

〈x: rat.  〈y: rat.  (x+y)/2〉〉
has two parameters.  The notation for applying a function to an argument is the same as that for 
indexing a list:  adjacency.  If  f  is a function of two parameters, then  f x y  applies  f  to  x  and  y .  
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Caution:  in some languages, applying  f  to  x  and  y  is  f (x, y) .  In ProTem, comma is bunch 
union, and function application distributes over bunch union.  So in ProTem,  f (x, y)   =   f x,  f y .

The predefined function  realtext  has four parameters. The first three parameters say how to format a 
number, and the last is the number to be formatted. For example,  realtext 4 1 10 pi = “ 3.1416^^0” .  
We can define a new function

new myrealtext (|realtext 4 1 10|)
by supplying just three parameters, and then apply it to a number to be formatted:

myrealtext pi = “ 3.1416^^0”

When the body of a function does not use its parameter, there is a syntax that omits the unused name.  
For example,  2→3  means  〈n: 2. 3〉  or choose any other parameter name.  And  nat→bin  means  
〈n: nat. bin〉  or choose any other parameter name.

Argumentation comes before bunch union in the order of data evaluation, and so it distributes over 
bunch union.

(f, g) (x, y)   =   f x,  f y,  g x,  g y
If you want to apply a function to a bunch without distributing over the elements of the bunch, you 
must package the bunch as a set.

Allowing the body of a function to be a bunch generalizes the function to a relation.  For example,  
nat→bin  can be viewed in either of the following two ways:  it is a function (with unused and 
omitted parameter) that maps each natural to  bin ;  it is all functions with domain at least  nat  and 
range at most  bin .  As an example of the latter view, we have

〈i: int.  i<10〉 :  nat→bin

If  f  and  g  are functions, then
f | g “ f  otherwise  g ”, “the selective union of  f  and  g ”

is a function that behaves like  f  when applied to an argument in the domain of  f , and otherwise behaves 
like  g .

☐(f | g)  =  ☐f, ☐g
(f | g) x  =  (x:☐f  ⊨ f x ⫤ g x)

The function  〈f: nat→rat.  f 2〉  is “higher order”, which means it has a function-valued parameter.  It 
can be applied to any function with domain at least  nat  and range at most  rat .

Let  f  and  g  be functions such that  –(f: ☐g)  ( f  is not in the domain of  g ).  Then  g f  is the 
composition of  g  and  f .

(x: ☐(g f))  =  (x: ☐f) ∧ (f x: ☐g)
(g f) x  =  g (f x)

Named-Data

Named-data has the form
simplename (| data |)

Within the data brackets  (| |) , the simplename stands for the data recursively.  The simplename 
begins its scope at the left data bracket and ends its scope at the corresponding right data bracket (see 
Scope).  Consequently, the name can be any simple name, even one that has already been defined in 
the scope that encloses the named-data.
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For example, here is a bunch of texts (a pattern or grammar).
term (| “a”,    “b”,    term; “+”; term ,    term; “–”; term |)

This bunch includes the text  “a+b+a–a”  and many more texts.  It is equivalent to
(“a”, “b”); *((“+”, “–”); (“a”, “b”))

Data is evaluated as needed.  The preceding bunch is infinite, but it may appear in a context that does 
not require its complete evaluation.  For example, the binary expression

“a+b+a–a”:  term (| “a”,    “b”,    term; “+”; term ,    term; “–”; term |)
can be evaluated to  ⊤  without fully evaluating the named-data to the right of the colon.

Here is the factorial function.
fact (| 0 → 1 | 〈n: nat+1.  n × fact (n–1)〉 |)

If we were to fully evaluate it by applying it to all its arguments, the evaluation would take infinite 
time and memory.  But

fact (| 0 → 1 | 〈n: nat+1.  n × fact (n–1)〉 |) 5
applies the function to one argument,  5 , and the evaluation takes finite time and memory.

The expression
tree (| [nil], [tree; int; tree] |)

is all binary trees with integer nodes.

Here is a named-data expressing the infinitely long text  ∞*“❤ ”  that is all hearts.
hearts (| “❤ ”; hearts |)

A named-data is equal to the data with all occurrences of the name replaced by the named-data.  So
hearts (| “❤ ”; hearts |)

= “❤ ”; hearts (| “❤ ”; hearts |)
= “❤ ”; “❤ ”; hearts (| “❤ ”; hearts |)
and so on.  Evaluation of  hearts (| “❤ ”; hearts |) _ 5  gives  “❤ ” .

value-Data

A value-data allows us to use a program to compute data.  It has the form
value simplename : data := data ⟦ program ⟧

A local variable, called the value-variable, is defined with a type and initial value.  Then the program 
is executed.  The result is the final value of the value-variable.  We have not yet presented programs, 
but the following example, which approximates the base of the natural logarithms  e , should give 
the idea.

value sum: rat:= 1
⟦new term: rat:= 1.
  for i: 1;..15 ⟦term:= term/i.  sum:= sum+term⟧⟧

There are no side effects.  Nonlocal variables become constants within the program;  their values 
may be used, but assigning them is not permitted.  Input from and output to nonlocal channels are 
not permitted.

All the ways of expressing data can be combined arbitrarily, without restriction.  Here we define  
howeven  as a function whose body is a value-data.  It expresses the number of times  2  is a factor 
of its argument.

new howeven (|〈n: nat+1.  value h: 0,..n:= 0
                                                      ⟦new m: 1,..n+1:= n.
                                                        loop ⟦if even m ⟦h:= h+1.  m:= m/2.  loop⟧⟧⟧〉|) 
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A value-variable begins its scope at the left program bracket  ⟦  and ends its scope at the 
corresponding right program bracket  ⟧  (see Scope).  Consequently, the value-variable can be any 
simple name, even one that has already been defined in the scope that encloses the value-data.  The 
type and initial value of the value-variable cannot use the value-variable.

Quote and Unquote

The predefined function  quote  takes any data and produces a text representation of the data.  
Roughly speaking, it quotes its argument.  For examples,  quote 123 = “123” ,  quote ⊤ = “⊤” ,  
quote “abc” = ““abc”” ,  quote {0, [1; 2]} = “{0,[1;2]}” .  The argument is evaluated before quoting;  
for examples,  quote (2×3) = “6” ,  quote (0<1) = “⊤” .  In a context where  x=3 ,  quote x = “3”  and  
quote (x×4) = “12”.  Function  quote  does not provide any control over the format of the resulting 
text.  For real numbers, fine control over the format of the resulting text is provided by the 
predefined function  realtext .

The predefined function  unquote  is a kind of inverse of  quote .  It applies to texts;  roughly 
speaking, it unquotes its argument.  For examples,  unquote “123” = 123 ,  unquote “⊤” = ⊤ ,  
unquote ““abc”” = “abc” ,  unquote “{0, [1; 2]}” = {0, [1; 2]} .  The argument is evaluated after 
unquoting;  for examples,  unquote “2×3” = 6 ,  unquote “0<1” = ⊤ .  In a context where  x=3 ,  
unquote “x” = 3  and  unquote “x×4” = 12 .  In a context where  x  is not defined ,  unquote “x”  is not 
evaluated.  If the argument does not represent a ProTem data expression, the function is not 
evaluated.

Whenever a data that is not a text is used in a context that requires a text, the  quote  function is 
applied automatically.  For example

! 123
places a number where a text should be.  So  quote  is applied automatically ( ! quote 123 ) resulting 
in a text ( ! “123” ) as required for output to the screen.  If  quote  has been redefined (see Scope), the 
predefined  quote  is used.

Whenever a text data is used in a context that requires a data that is not a text, the  unquote  function 
is applied automatically.  For example,

“123” + 1  =  unquote “123” + 1  =  123+1  =  124
If  unquote  has been redefined (see Scope), the predefined  unquote  is used.

Scope

A name is defined in these seven ways:  by the keyword  new , as a named-program, as a named-
data, as a function parameter, as a plan parameter, as a for-index, or as a value-variable.  We have 
already met function parameters and named-data and value-variables;  we shall meet the others 
shortly.  The scope of a name is the part of a program in which the name is defined.  The scope of a 
name is limited by program brackets  ⟦ ⟧ , except that the scope of a function's parameter is limited 
by function brackets  〈 〉 , and the scope of the dataname of a named-data is limited by data brackets  
(| |) .

A name defined in a local scope using the keyword  new  must be new, not already defined since the 
most recent opening program bracket  ⟦ .  Its scope extends from its definition through all following 
sequentially composed programs to the corresponding closing program bracket  ⟧ .  But it may be 
covered by a redefinition in an inner scope.  Using  new x:= 2  and  new x:= 3  as example 
definitions, and letting  A ,  B ,  C ,  D , and  E  stand for arbitrary program forms (but not  new  or  
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old ), in
 ⟦A.  new x:= 2.  B.  ⟦C.  new x:= 3.  D⟧.  E⟧

the definition of  x  as the number  2  is not yet in effect in  A , but it is in effect in   B , C ,  and  E .  
The definition that makes  x  the number  3  is in effect in  D .  None of  A ,  B ,  C ,  D , or  E  can 
contain a redefinition of  x  unless it is within further scope limiters  ⟦ ⟧  or  〈 〉  or  (| |) .

A name defined by  new  can become undefined by the keyword  old , ending its scope early.  So in
new x:= 2.  A.  old x.  B

the definition of  x  is in effect in  A  but not in  B .  Within  B , the name  x  has the same meaning (if 
any) that it had before the definition  new x:= 2 .  After  old x , the name  x  is again new and 
available for definition.  However,

new x:= 2.  ⟦old x.  A⟧
is not allowed;  a scope cannot be ended by  old  within a subscope.

A scope can be nested inside another scope, which can be nested inside another, and so on.  Outside 
all scope limiters  ⟦ ⟧  and  〈 〉  and  (| |)  is the persistent scope.  A name defined by  new  in the 
persistent scope is called a persistent name.  Persistent names name data (documents) and programs 
that you want to keep.  When you define a  new  name in the persistent scope, the name must differ 
from all names already in the persistent scope.  The scope of a persistent name ends only with  old .  
Its scope does not end with the end of a computing session (see Session), not even by switching off 
the power, which should not cut the power instantly, but should first cause the values of any 
variables in the persistent scope to be saved in nonvolatile memory.  In the persistent scope, there is 
a dictionary named  predefined  that contains the predefined names.

Names must be defined before they are used (except for a Forward Definition).  Whenever a name is 
used, it is looked up as follows:  first, look in the most local scope (innermost  ⟦ ⟧  or  〈 〉  or  (| |) );  
then look in the next most local scope;  then the next, and so on;  when all local scopes have been 
searched, look in the persistent scope;  finally, look in the  predefined  dictionary.  The first 
occurrence found is the one that is used.

Programs

Some programs are concerned with names:  defining a name ( new ), undefining a name ( old ).  
Other programs are variable assignment, input, output, and a variety of ways of combining programs 
to form larger programs.  All programs, including those that define and undefine names, are executed 
in their turn, just like variable assignments and input and output.

Variable Definition

Variable definition has the form
new newname : data := data

The newname becomes a variablename.  Here is an example variable definition.
new x: nat:= 5

This defines  x  to be a variable assignable to any element in  nat , and initially assigned to  5 .  There 
is no such thing as an “uninitialized variable” nor the “undefined value” in ProTem.  In a variable 
definition, the data after  :  is called the “type” of the variable, and the data after  :=  is called the 
“initial value”.  The type can be anything except the empty bunch, and the initial value must be an 
element of the type.  The type and initial value can depend on previously defined names, including 
variables.  For example,

new y: 0,..2×x:= x
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defines  y  as a variable whose value can be any natural number from (including)  0  up to 
(excluding) twice the current value of  x  (the value of  x  at the time this definition is executed), with 
initial value equal to the current value of  x .  But the type and initial value cannot make use of the 
variable being defined.  ProTem allows the type and initial value to be “static” (known at compile 
time), as in the first example (variable  x ), and it allows the type and initial value to be “dynamic” 
(not known until execution time), as in the second example (variable  y ).

Here are five more examples.
new s: 10*int:= 10*0
new t: text:= “”
new u: (0,..20)*char:= “abcde”
new L: [*nat]:= [0;..10]
new A: [3*[3*bin]]:= [3*[3*⊤]]

In the first example,  s  is defined as a variable that can be assigned to any string of ten integers, and 
is initially assigned to the string of ten zeroes.  In the second example,  text  is a predefined bunch 
equal to  *char , so  t  can be assigned to any text, and is initially assigned to the empty text.  In the 
next example,  u  is defined as a variable that can be assigned to any text of length less than  20 , and 
is initially assigned to the text  “abcde” .  In the next example,  L  is defined as a variable that can be 
assigned to any list of naturals, and is initially assigned to the first ten naturals.  In the last example,  
A  is defined as a variable that can be assigned to a  3×3  array of binary values, and is initially 
assigned to a  3×3  array of  ⊤ .

Assignment

A variable can be reassigned by the assignment program.  It has the form
variablename := data

Here are five examples using the definitions of the previous subsection.
x:= x+1 `now  x = 6
s:= s⊲2⊳8 `now  s = 0; 0; 8; 0; 0; 0; 0; 0; 0; 0
u:= u_(0;..3) `now  u = “abc”
L:= 3→5 | 5→7 | L `now  L = [0; 0; 0; 5; 0; 7; 0; 0; 0; 0]
A:=  (1; 2)→⊥ | A `now  A = [[⊤; ⊤; ⊤]; [⊤; ⊤; ⊥]; [⊤; ⊤; ⊤]]

The data on the right of  :=  must be an element in the type (evaluated at definition) of the variable 
on the left of  := .  As in the examples, the data on the right of  :=  can make use of the variable on 
the left of  := .

Constant Definition

Constant definition has the form
new newname := data

The newname becomes a constantname.  The data on the right of  :=  cannot make use of the name 
on the left of  := .  The constantname cannot be reassigned.  Here are three constant definitions.

new size:= 10.
new piBy2:= pi / 2.
new range:= 0,..size

where  pi  is a predefined constant name.

A constant may use variables to express its value.  For example
new xplus1:= x+1

The current value of variable  x  is used to evaluate  x+1 , and  xplus1  expresses that value.  Variable  
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x  may later be reassigned to another value, but that does not affect the value of  xplus1 .  For 
example,

new x: nat:= 3. ` x  has value  3
new xplus1:= x+1. ` x  has value  3  and  xplus1  has value  4
x:= 5 ` x  has value  5  and  xplus1  has value  4

Data Definition

Data definition has the form
new newname (| data |)

The newname becomes a dataname.  Data definition gives the data a name, but does not evaluate the 
data.

new xplus2 (|x+2|)
makes the value of  xplus2  depend on the value of variable  x .  As  x  changes value,  xplus2  
changes value so that  xplus2 = x+2  is always  ⊤ .  In the constant definition of  xplus1  earlier,  x+1  
is evaluated once, at definition time.  In the data definition of  xplus2 ,  x+2 is not evaluated at 
definition time;  it is evaluated every time  xplus2  is used in a context that requires its value.

new x: nat:= 3. ` assigns  x  to  3
new xplus2 (|x+2|). ` does not evaluate  x+2
x:= xplus2. ` assigns  x  to  5
x:= xplus2 ` assigns  x  to  7

A data definition can depend indirectly on a variable.  For example,
new twoxplus4 (|2×xplus2|)

makes  twoxplus4  depend indirectly on the value of variable  x .  In this definition, the value of  
xplus2  is not required, so it is not evaluated.  If  x  currently has value  3 , then  x:=  twoxplus4  
assigns  x  to  10 .  Then another  x:= twoxplus4  assigns  x  to  24 .

Data Recursion

In a variable definition, the type and initial value cannot depend on the variable being defined.
new bad: 0,..2×bad:= bad       ` illegal

is not allowed due to the two occurrences of  bad  to the right of the colon.  Likewise a constant 
definition cannot be recursive.

We have already seen that named-data can be recursive.  Data definition also allows recursion.  The 
next example defines  div  to be the integer division function for natural numbers.

new div (|〈a: nat.  〈d: nat+1.  a<d ⊨ 0 ⫤ even a ⊨ 2 × div (a/2) d ⫤ 1 + div (a–d) d〉〉|)

Here is a function that eats arguments until it is fed argument  0 .
new eat (|〈n: nat.  n=0 ⊨ 0 ⫤ eat〉|)

So  eat 5 2 0  =  0 , and  eat 4 7 3 8 0  =  0 , and  eat 1 2  =  eat  and  eat: nat → (0, eat) .

Here is a baseless recursion.  If it is evaluated, its evaluation is nonterminating.
new rec (|rec|)

Named-Data versus Data Definition

Since we have data definition, named-data is unnecessary.  For example,
new t:  tree (|[text], [tree; tree]|):= [“abc”]
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defines  t  to be a tree-valued variable (binary tree, text at the leaves).  It is almost equivalent to
new tree (|[text], [tree; tree]|).  new t: tree:= [“abc”].  old tree

The difference occurs when  tree  has already been defined in the current scope;  in that case, the 
named-data is still all right, but the data definition is not.

In the next example, variable  g  is assigned to the greatest common divisor of  10  and  15 .
g:= gcd (|〈a: nat+1.  〈b: nat+1.  a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|) 10 15

This example is exactly equivalent to
⟦new gcd (|〈a: nat+1.  〈b: nat+1.  a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|).
  g:= gcd 10 15⟧

Named-data is a succinct way of recursively defining some data (such as  tree  and  gcd ), and using 
the data once, immediately (as the type of  t , and the assignment of  g ).  However, if you need to 
use the data (use  tree  or  gcd ) more than once, you must make a data definition.

Constant Definition versus Data Definition

A constant definition evaluates its data once, at definition time, whereas a data definition evaluates 
its data each time its value is required.  If the data is fully evaluated, there is no difference.  For 
example, there is no difference between these two definitions:

new five:= 5
new five (|5|)

When there are no variables used to express the value (neither directly nor indirectly), there is no 
semantic difference between data definition and constant definition, but there may be an efficiency 
difference.  Compare these two definitions.

new six:= 5+1
new six (|5+1|)

If the value of  six  is never required, the data definition  (| |)  is more efficient.  If the value of  six  is 
required once, they are equally efficient.  If the value of  six  is required two or more times, the 
constant definition  :=  is more efficient.  Here is a more interesting comparison.

new double:= 〈n: 0,..10.  2×n〉
new double (|〈n: 0,..10.  2×n〉|)

The constant definition causes the function to be evaluated by applying it to all its arguments and 
storing the results.  In effect, the function is evaluated to the list

[0; 2; 4; 6; 8; 10; 12; 14; 16; 18]
Then, when the value of  double  applied to an argument is required, that argument indexes the list.  
The data definition does not evaluate the function.  Each time the value of  double  applied to an 
argument is required, the body of the function is evaluated.  Which one is more efficient depends on 
the size of the domain, the complexity of the result, and the number of times the definition is used.

Sequential Composition

Sequential composition is denoted by a period (point, dot).
program . program

It is an infix connective;  in other words, the period comes between and joins programs.

Concurrent Composition

Concurrent composition has the form
program || program

The concurrent composition of programs  P ,  Q , and  R  is  P||Q||R .  A variable defined before the 
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concurrent composition remains a variable in at most one component of the concurrent composition;  
in all the other components of the concurrent composition, it becomes a constant.

new a: nat:= 1 || new b: nat:= 2.  new c (|a+b|).  ⟦a:= 4.  A⟧ || ⟦b:= 8.  B⟧.  C
In the concurrent composition  ⟦a:= 4.  A⟧ || ⟦b:= 8.  B⟧ , variable  a  can be reassigned in one of the 
concurrent programs, but not in both.  Likewise variable  b  can be reassigned in one of the 
concurrent programs, but not in both.  At the start of  A , variable  a  has value  4 , constant  b  has 
value  2 , and data  c  has value  6 .  At the start of  B , constant  a  has value  1 , variable  b  has 
value  8 , and data  c  has value  9 .  If  A  does not reassign  a , and  B  does not reassign  b , then at 
the start of  C , variable  a  has value  4 , variable  b  has value  8 , and data  c  has value  12 .  

new a: nat:= 1 || a:= 2 `illegal
is not allowed because the use of  a  does not sequentially follow its definition.  Concurrent 
programs cannot affect each other through assignments of variables.  For co-operation, programs can 
communicate with each other on channels (see Channel Definition).  A channel can be used for 
output in only one component of a concurrent composition.  It can be used for input in all 
components, reading the same inputs independently.

Program brackets  ⟦ ⟧  are needed for a concurrent composition of sequential compositions
⟦A. B⟧ || ⟦C. D ⟧

because concurrent composition comes before sequential composition in the execution order.

In summary:  A name defined in one part of a concurrent composition cannot be used in the other 
parts, but it can be used in a sequentially following program.  A variable defined before a concurrent 
composition remains a variable in at most one part of the composition, and is a constant in the other 
parts.  A channel defined before a concurrent composition can be used for output in at most one part 
of the composition, and can be used for input in all parts.

if-Program

An if-program has the form
if data ⟦ program ⟧

The if-program
if b ⟦P⟧

is executed as follows:  binary expression  b  is evaluated;  if its value is  ⊤ , then program  ⟦P⟧  is 
executed;  if its value is  ⊥ , then program  ⟦P⟧  is not executed.  An if-else-program has the form

if data ⟦ program ⟧ else ⟦ program ⟧
The if-else-program

if b ⟦P⟧ else ⟦Q⟧
is executed as follows:  binary expression  b  is evaluated;  if its value is  ⊤ , then program  ⟦P⟧  is 
executed and program  ⟦Q⟧  is not executed;  if its value is  ⊥ , then program  ⟦P⟧  is not executed 
and program  ⟦Q⟧  is executed.  The program  if b ⟦P⟧  is equivalent to  if b ⟦P⟧ else ⟦ok⟧  where  ok  
is a predefined program whose execution does nothing and takes no time.

case-Program

A case-program has the form
case data ⟦ program ⟧

in which the program is a sequence of cases.  For example, in a case-program with three cases,
case n ⟦P⟧ ⟦Q⟧ ⟦R⟧

the programs, called cases, are numbered in order.  Case 0 is  ⟦P⟧ , case 1 is  ⟦Q⟧ , and case 2 is  
⟦R⟧  .  It is executed as follows:  natural expression  n  is evaluated;  then one of the programs is 
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executed.  In the example, if  n  has value  1 , then just  ⟦Q⟧  is executed.  If  n  is equal to or greater 
than the number of cases, an error message is printed on channel  msg  and execution stops.  The 
example case-program is equivalent to

if n=0 ⟦P⟧ else ⟦if n=1 ⟦Q⟧ else ⟦if n=2 ⟦R⟧ else ⟦!“Error: case index too large.”.  stop⟧⟧⟧

Here is another example, also with three cases:
case 2–n
⟦ok⟧  `case 0:  all is well, nothing to do
⟦!“warning:  don't do it again”⟧  `case 1:  warning
⟦!“you're fired”⟧  `case 2:  firing

As the example illustrates, it is helpful to put a comment with each case to say the case index.

A case-else-program has the form
case data ⟦ program ⟧ else ⟦ program ⟧

in which the first program is a sequence of cases.  A case-else-program with three cases,
case n ⟦P⟧ ⟦Q⟧ ⟦R⟧ else ⟦S⟧

is the same as the case-program, but if  n≥3 , then the program  ⟦S⟧  after  else  is executed.  The 
example case-else-program is equivalent to

if n=0 ⟦P⟧ else ⟦if n=1 ⟦Q⟧ else ⟦if n=2 ⟦R⟧ else ⟦S⟧⟧⟧

for-Program

A for-program has the form
for simplename : data ⟦ program ⟧

The simplename becomes a constantname in the program.  Here is a nest of for-programs that 
computes the transitive closure of array  A: [n*[n*bin]] .

for j: 0;..n ⟦for i: 0;..n ⟦for k: 0;..n ⟦if A i j ∧ A j k ⟦A:= (i;k) → ⊤ | A⟧⟧⟧⟧
The if-program  if A i j ∧ A j k ⟦A:= (i;k) → ⊤ |  A⟧  can be restated as

A:= (i;k) → (A i k  ∨  (A i j ∧ A j k)) | A
if you prefer.  The name being defined by  for  is called a for-index.  It is known only within the for-
program, and it is known there as a constant, and so it is not assignable.  In the example, each of the 
for-indexes  j ,  i , and  k  takes values  0, 1, 2, and so on up to but excluding  n .

For a second example, here is the sieve of Eratosthenes.
new n:= 1000.  new prime: n*bin:= 2*⊥; (n–2)*⊤.
for i: 2;..ceil (sqrt n) ⟦if prime_i ⟦for j: i;..ceil (n/i) ⟦prime:= prime⊲i×j⊳⊥⟧⟧⟧

A for-index is “by initial value”, so this example increases  x  by 1 , not  2 .
for i: x; x ⟦x:= i+1⟧

This next example prints the natural numbers forever.
for n: 0;..∞ ⟦! n; “ ”⟧

After the  :  we can have any string expression;  the for-index stands for each item in the string, in 
sequence.  We can also have any bunch expression;  the for-index stands for each element of the 
bunch, concurrently.  As an example (note the use of  ,..  rather than  ;..  as earlier),

for i: 0,..#L ⟦L:= i → 0 | L⟧
makes the items of  L  be  0 , concurrently.  We could also write either of these:

for i: ☐L ⟦L:= i → 0 | L⟧
L:= [#L*0] 
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The domain of the for-index can also be a bunch of strings, or a string of bunches, and so on, so that 
sequential and concurrent execution can be nested within each other.  (Note:  distribution and 
factoring laws are not applied;  the structure of the expression is the structure of execution.)

A for-index begins its scope after  ⟦  and ends its scope at the corresponding  ⟧ .  Consequently, the 
for-index can be any simple name, even one that has already been defined in the scope that encloses 
the for-program.  The domain of the for-index cannot use the for-index.

Program Definition

Program definition has the form
new newname ⟦ program ⟧

The newname becomes a programname within the program.  Program definition gives a program a 
name, but does not execute the program.  For example,

new switchends ⟦L:= 0 → L 9 | 9 → L 0 | L⟧
Execution of this definition defines the program name  switchends , but does not execute program  
⟦L:= 0 → L 9 | 9 → L 0 | L⟧ .  After execution of this definition, the name  switchends  can be used to 
call (cause execution of) the program it names.  Program definitions can be recursive.  Predefined 
program names include  await ,  exec ,  ok ,  stop ,  wait .

A fancy name can be used as a specification.  For example,
new « xʹ > x » ⟦x:= x+1⟧

The specification  « xʹ > x »  means the final value of  x  is greater than its initial value.  It is 
implemented (refined, implied) by the program  ⟦x:= x+1⟧ .  A prover is invoked by the ctl v 
command (see Verify).  If the specification is written within the language that the prover 
understands, the prover attempts to prove that the specification is implemented (refined, implied) by 
the program.  If the program makes use of a specification, the inner specification is used in the outer 
proof.  For example,

new « xʹ = 0 » ⟦if x≠0 ⟦x:= x–1.  « xʹ = 0 »⟧⟧
In the program  ⟦if x≠0 ⟦x:= x–1.  « xʹ = 0 »⟧⟧ , the specification  « xʹ = 0 »  means exactly what it 
says, rather than the program that it names.  Thus the use of specifications makes complicated fixed-
point semantics unnecessary.  If the prover fails to understand the specification, or fails to prove the 
refinement, it informs the programmer, and treats the specification as just a name.  (See the paper 
Specified Blocks.)

Named-Program

A named-program has the form
simplename ⟦ program ⟧

The simplename becomes a programname within the program that it names.  Although the name is 
situated before a  ⟦ , it begins its scope after  ⟦  and ends its scope at the closing  ⟧ .  Consequently, 
the name can be any simple name, even one that has already been defined in the scope that encloses 
the named-program.  The name is attached to the program (like a program definition), and the 
program is executed (unlike a program definition).  One purpose of this naming is to make loops.  
Here is a two-dimensional search for  x  in an  n×m  array  A  of integers (that is,  A: [n*[m*int]] ).

http://www.cs.utoronto.ca/~hehner/SB.pdf
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new i: nat:= 0.
tryThisI ⟦if i=n ⟦! x; “ does not occur.”⟧
               else ⟦new j: nat:= 0.

     tryThisJ ⟦if j=m ⟦i:= i+1. tryThisI⟧
             else ⟦if A i j = x ⟦! x; “ occurs at ”; i; “ ”; j⟧

  else  ⟦j:= j+1.  tryThisJ⟧⟧⟧⟧⟧

The next example is a fast remainder program, assigning natural variable  r  to the remainder when 
natural  a  is divided by positive natural  d , using only addition and subtraction.

r:= a.
outerloop ⟦if r≥d ⟦new dd: nat:= d.

innerloop ⟦r:= r–dd.  dd:= dd+dd.
                  if r<dd ⟦outerloop⟧ else ⟦innerloop⟧⟧⟧⟧

N ⟦P⟧  is equivalent to  ⟦P⟧  with occurrences of  N  replaced by  N ⟦P⟧ .  So the fast remainder 
example means the same as

r:= a.
⟦if r≥d ⟦new dd: nat:= d.
              ⟦r:= r–dd.  dd:= dd+dd.
                if r<dd ⟦outerloop ⟦if r≥d ⟦new dd: nat:= d.

                              innerloop ⟦r:= r–dd.  dd:= dd+dd.
                                        if r<dd ⟦outerloop⟧ else ⟦innerloop⟧⟧⟧⟧⟧

                else ⟦innerloop ⟦r:= r–dd.  dd:= dd+dd.
             if r<dd ⟦outerloop ⟦if r≥d ⟦new dd: nat:= d.
                                                         innerloop ⟦r:= r–dd.  dd:= dd+dd.
                                        if r<dd ⟦outerloop⟧
                                        else ⟦innerloop⟧⟧⟧⟧⟧ 

                   else ⟦innerloop⟧⟧⟧⟧⟧
This process can be repeated.  Although semantically there are calls, in the previous two examples 
they are last actions (tail recursions), so they are implemented as branches (jumps, go to's).

The next example illustrates that named programs provide general recursion, not just tail recursion.  
It computes the Fibonacci numbers  x:= fib n  and  y:= fib (n+1)  in  log n  time.

Fib ⟦if n=0 ⟦x:= 0.  y:= 1⟧
        else ⟦if odd n ⟦n:= (n–1)/2.  Fib.  n:= x.  x:= x^2 + y^2.  y:= 2×n×y + y^2⟧

     else ⟦n:= n/2 – 1.  Fib.  n:= x.  x:= 2×x×y + y^2.  y:= n^2 + y^2 + x⟧⟧⟧

As in a program definition, a fancy name can be used as a specification.  For example,
« xʹ > x » ⟦x:= x+1⟧

The specification  « xʹ > x »  is implemented (refined, implied) by the program  ⟦x:= x+1⟧ .  A prover 
is invoked by the ctl v command (see Verify).  If the specification is written within the language that 
the prover understands, the prover attempts to prove that the specification is implemented (refined, 
implied) by the program.  If the program makes use of a specification, the inner specification is used 
in the outer proof.  For example,

« xʹ = 0 » ⟦if x≠0 ⟦x:= x–1.  « xʹ = 0 »⟧⟧
Inside the program brackets, the specification  « xʹ = 0 »  means exactly what it says, rather than the 
program that it names.  Thus the use of specifications makes complicated fixed-point semantics 
unnecessary.  If the prover fails to understand the specification, or fails to prove the refinement, it 
informs the programmer, and treats the specification as just a name.  (See Specified Blocks.)

http://www.cs.utoronto.ca/~hehner/SB.pdf
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Suppose a name is defined within a loop.  For example, the name  a  in
infiniteLoop ⟦new a:= “a”. !a.  infiniteLoop⟧

Executing this loop prints an infinite sequence of the letter  “a” .  Replacing the call with the named-
program, it is equivalent to

⟦new a:= “a”. !a.  infiniteLoop ⟦new a:= “a”. !a.  infiniteLoop⟧⟧
In a general recursion, each call opens a new scope, and each new definition hides but does not 
destroy the previous definition.  But when the recursive call is the last action performed in the 
named-program (a tail recursion), as in this example, the old scope and its definitions cannot be used 
again, so the new scope replaces the old one;  the scopes and variables do not pile up.

Named-Program versus Program Definition

Let  name  be a new name (not defined in the local scope), and let  program  be a program, possibly 
using the name  name .  Then the following three lines are equivalent to each other.

name ⟦program⟧
⟦new name ⟦program⟧.  name⟧
new name ⟦program⟧.  name.  old name

Therefore named-programs are unnecessary.  For example
loop ⟦if n>0 ⟦n:= n–1.  loop⟧⟧

is equivalent to
⟦new loop ⟦if n>0 ⟦n:= n–1.  loop⟧⟧.  loop⟧

A named-program is a succinct way of recursively defining a program, and using the program once.  
However, if you need to use (call) a program more than once, you must make a program definition.

Output and Input

Each channel is defined to transmit a specific type of value.  The output channels  screen ,  printer , 
and  mail , and the input channels  keys  and  mail  are predefined to transmit text.  The input channel  
microphone  and the output channel  speaker  are predefined to transmit sound.  We can define local 
channels to transmit any type of value (see Channel Definition).

Output has the form
channelname ! data

Channel  screen  accepts text, which is displayed on the screen.  The program
screen! “Hi there.”

sends the text  “Hi there.”  to the screen.  Output is buffered so it will be available when  screen  is 
ready to receive it.  Texts can be joined and sent together.

screen! “Answer = ”; quote x; nl
where  quote  is a predefined function that converts to a text, and  nl  is the new line character, or 
next line character, or return character.  Function  quote  can be omitted (see Quote and Unquote). 

When the  delete  (backspace) character is output to the  screen  or  printer , the previous character is 
deleted.  If there are more  delete  characters than previous characters, the extra  delete  characters 
are ignored.  When the  tab  character is output, some amount of space is substituted.  When the  nl  
character is output, further characters start on a new line.

Email input and output are made convenient for nonprogrammers by a mail program, but at the level 
of ProTem programming, emailing looks like this:
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mail! “To: hehner@cs.utoronto.ca”; nl;
          “Hey Rick, have a look at the  exec  program: ”; nl;
          definition “exec”

The keyboard is a program that runs concurrently with other programs;  you do not need to initiate it;  
it is already running.  It monitors what key combinations are pressed, and for what duration, and 
outputs a string of characters (a text) on channel  keys .  The shift A combination is a single character  
“A” .  The escape key and the ctl . combination are both the single character named  end .  The click 
button is just a key like any other;  click  and  doubleclick  are characters.

Input has two forms:  without echo, and with echo.  The form without echo is
channelname ? data (: data :) data

The channelname is the input channel.  The input channel may come from a keyboard or microphone 
or camera, or it may come from a document, or it may be an internal channel (see Channel 
Definition).  The type of input read is determined by the channel.  The input read is the earliest input 
on the channel that has not yet been read.  If input is not yet available, it is awaited.  What comes 
after  ?  is called the pattern.  The pattern directs the input.  The pattern is in  3  parts.  The first part 
is called the left context;  the middle part between the core brackets  (: :)  is the part we want, called 
the core;  and the last part is called the right context.  After the input program, we refer to the input 
matching the core using the channel name followed by  ? .  If the available input is shorter than 
required by the pattern, execution awaits further input.  If the available input is longer than required 
by the pattern, the remaining input is future input.

Here is an example.  The constant  digit  is predefined as
new digit:= “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”

Let  doc  be an input channel that reads a text document.  Then
doc? *“ ” (:digit:) “”

reads input from channel  doc .  First, there may be some spaces  *“ ” , and we want to pass over 
them.  Then there is a  digit , and that's what we want.  After that, we don't want to read any more 
input, so that's the empty string  “” .  The digit we read can be referred to as   doc? .  For example,

if doc?=“5” ⟦screen! “You win.”⟧
Here is a further input from channel  doc .

doc? “” (:text:) nl
This input reads whatever remains of the current line, up to and including  nl  (the new line 
character).  Then  doc?  refers to the text up to but not including  nl .

The space,  tab ,  nl ,  delete , and  end  characters may be part of the input;  they are just characters 
like any others.  For example, to read one character and then output a visible character,

keys? “” (:char:) “”.  if keys?=“ ” ⟦screen! “⨽⨼ ”⟧
                                else ⟦if keys?=tab ⟦screen! “➭”⟧
                                         else ⟦if keys?=nl ⟦screen! “↩︎”⟧
                                                  else ⟦if keys?=delete ⟦screen! “⇜”⟧
                                                           else ⟦if keys?=end ⟦screen! “■”⟧
                                                                    else ⟦screen! keys?⟧⟧⟧⟧⟧

After the input
keys? *(“ ”, tab, nl) (:*digit:) end

the digits can be referred to as  keys? .  Then we might have the assignment
x:= unquote (keys?) + unquote (keys?)

where  unquote  is a predefined function that converts from a text to the type required.  Function  

mailto:hehner@cs.utoronto.ca
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unquote  can be omitted (see Quote and Unquote), so we may write
x:= keys? + keys?

Both occurrences of  keys?  refer to the same input, and  keys?  continues to refer to the same input 
until the next time new input is read from channel  keys .

The left context is as long as possible.  In
keys? *(“ ”, tab, nl) (:text:) end

the left context is  *(“ ”, tab, nl) .  This consumes spaces, tabs, and new line characters, until the first 
character that is none of those.  The core is as short as possible while allowing the right context, 
which is  end , to match.  So the core consists of all characters up to but not including the first 
occurrence of  end .  The right context is also as short as possible.  So

keys? “” (:text:) *“ ” 
just inputs the empty text no matter what input is available.

Pattern  numpat  is predefined as follows.
new numpat:= (“+”, “–”, “”); digit; *digit; ((“.”; digit; *digit), “”)

To receive a text on channel  doc  that can be interpreted as a number, possibly preceded by spaces, 
ending in a space or comma or new line or  end , input

doc? *“ ” (:numpat:) (“ ”, “,”, nl, end)
If the right context  (“ ”, “,”, nl, end)  were  “” , only leading spaces and an optional sign and the first 
digit would be read;  subsequent digits, a point, and more digits would not be read.

If  c  is a channel to input text, the program
c? “” (: “y”, “n” :) “”

inputs one character, either  “y”  or  “n” ,  from channel  c .  If the first available character on channel  
c  is  “a” , or more generally, if the input on the channel does not fit the pattern, what happens is not 
defined.  Here are three options.
• The program cannot be executed, so execution ends.
• An error message is sent to channel  msg  to say that the input is unacceptable, and execution 

ends.
• An error message is sent to channel  msg  to say that the input is unacceptable, and the sender is 

given another opportunity to send an input that fits the pattern.
What happens depends on the implementation;  it may depend on the channel, and on the number of 
attempts.  Perhaps the last option is appropriate for channel  keys , and the first is appropriate for a 
secure channel.  Of course, you can read whatever character you are given  c? “” (:char:) “”  and 
decide what happens if it is neither  “y” nor  “n” .

Input without echo is invisible.  It is useful for reading from a stored document.  It is useful when 
reading a password (see Read Password).  It is useful for single-stepping through an execution.  But 
it is not useful for ordinary keyboard input.  It does not allow corrections by deletions and editing;  
instead,  delete  and  click  are just characters like any others.  Input that allows corrections requires a 
visible echo, which we introduce next.

Input with echo has the form
channelname ? data (: data :) data ! channelname

What follows  !  is the output channel for the echo.  Each input item is immediately echoed (output) 
on the echo channel.  It allows you to use  delete  and cut/copy/paste to change what you have 
entered.  The echo shows each character as it is entered, and each deletion and edit as it is made.  
When the pattern has been fulfilled, the input is finished.  For example,

keys? “” (:text:) end !screen
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reads text until  end  is sent.  The input may span several lines, and contain  tab  and  nl  (new line) 
characters.  Characters entered can be deleted (including new line characters), and changes can be 
made using cut/copy/paste, until  end  is sent, fulfilling the pattern.  Then the corrected text, not 
including  end , can be referred to as  keys? .

If  c  is the name of an input channel, then  c??  is a binary expression with value  ⊤  if there is 
written but unread data on the channel, and  ⊥  if there is not.  For example,

if keys?? ⟦keys? “” (:char:) “” !screen⟧ else ⟦screen! “Are you still there?”⟧
If  doc  is a channel that reads from a document,  doc??  tells whether there is more to be read.  Input 
from a document channel that does not currently have any written-but-not-yet-read data waits until 
data is written to the channel by a concurrent program.

If  c  is a channel to input text and  d  is a channel to output text, the program
c? “” (: “y”, “n” :) “” !d

inputs one character, either  “y”  or  “n” ,  from channel  c , and echoes it to channel  d .  If the first 
available character on channel  c  is  “a” , or more generally, if the input on the channel does not fit 
the pattern, execution waits for a correction to make the input fit the pattern.  Input with echo allows 
correction;  input without echo does not.

Suppose the input program  keys? “” (:text:) “z” !screen  is executed.  And suppose the input  “ab”  is 
keyed in.  And then the input is edited by inserting  “z”  between  “a”  and  “b” .  The left context is 
empty, the core is  “a” , the right context is  “z” , and  “b”  is future input.  (See predefined  drain .)

The two programs
in? left (:core:) right !out
in? left (:core:) right.  out! in?

usually differ.  The first echoes all the input matching  left ,  core , and  right , and allows input 
deletion and editing until the pattern is fulfilled.  The second treats  delete  and  click  as ordinary 
characters being read, without deletions or editing, and outputs only the input matching  core .

We have now seen all of input and output.  But there are some abbreviations to make them more 
convenient.  An output channel name can be omitted, in which case the output channel is  screen .  
For example,

! “Hello World”
prints  Hello World  on channel  screen .  And

! 2+2
prints  4  on channel  screen .  This program is short for

screen! quote (2+2)
If the output channel is omitted, and the name  screen  has been redefined, the output channel is the 
predefined channel  screen .

An input channel name can be omitted, in which case the input channel is  keys .  For example,
? “” (:text:) end !

reads text from  keys  (possibly corrected, terminated by  end ), with echo to  screen .  The most 
recent core input on channel  keys  can be referred to as just  ? .  And  ??  is a binary expression 
saying whether there is written but unread data on channel  keys .  If the input channel is omitted, 
and the name  keys  has been redefined, the input channel is the predefined channel  keys .

The expression  unquote (keys?)  can be written  unquote (?)  or  keys?  or  ? .  But it cannot be 
written  unquote keys?  because that is parsed as  (unquote  keys)? .  And it cannot be written  
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unquote ?  because the implementation will complain that  unquote  is not a channel.  Similarly for  
quote (keys??) .  When  keys?  is shortened to  ?  and used as a list index or as an argument to a 
function or plan, it must be in evaluation brackets  (?) .  When  keys??  is shortened to  ??  and used 
as an argument to a function or plan, it must be in evaluation brackets  (??) .

In input with echo, the pattern can be omitted, in which case the pattern is
*(“ ”, tab, nl) (:text:) end

The shortest input program
?!

is short for
keys? *(“ ”, tab, nl) (:text:) end !screen

and means:  from channel  keys , skip leading spaces, tabs, and new lines, then read text including 
spaces, tabs, and new lines, corrected by any deletions and editing, until the  end  character is 
received.  The value of  keys? , or just  ? , is the core text, not including the leading spaces, tabs, and 
new lines, and not including the trailing  end .  The entire input is echoed, each character, each 
deletion, each editing change, on channel  screen .

The shortest output program
!?

is short for
screen! keys?

and means:  on channel  screen , output the core of the most recent input from channel  keys .

In summary, output is
outchannel ! data

Input without echo
inchannel ? leftcontext (: core :) rightcontext

reads data according to the pattern, including such characters as  delete  and  click , with no 
corrections and no echo.  Input with echo

inchannel ? leftcontext (: core :) rightcontext ! echochannel
is correctable by deletion and editing until the pattern is fulfilled.  The core input most recently read 
on inchannel is referred to as

inchannel ?
The binary expression

inchannel ??
says whether there is written but unread data on inchannel.  If the channel name is  keys  or  screen  
it can be omitted.  In an input with echo, if the pattern is

*(“ ”, tab, nl) (:text:) end
it can be omitted.

Channel Definition

Channel definition has the form
new newname ? data ! data

The newname becomes a channelname.  The first data is the type, and the second data is the initial 
value.  The type and initial value cannot use the name of the channel being defined.  The definition

new c? nat !nil
defines  c  to be a new local channel that transmits values of type  nat , and initially there are no 
values in the channel.  Initially  c?=nil  because no input has yet been read.  Initially  c??=⊥  to say 
there is no written but unread data in the channel.  Channel  c  can be used for output and input. 
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The definition
new updown? text !“What goes up ”

creates a channel named  updown  that transmits text.  Initially  updown?=“”  because no input has 
yet been read.  Initially  updown??=⊤  because there is the written but unread input

“What goes up ”
After the input program

updown? “” (:char:) “”
we have  updown?=“W” .  Then, after the output program

updown! “must come down.”
the unread input available for reading on channel  updown  is

“hat goes up must come down.”
Now, after the input program with echo

updown? “” (:char:) “” !updown
we have  updown?=“h” , and the unread input available on channel  updown  is

“at goes up must come down.h”

If we have a text document named  report , we can create a channel  rpt  to read from it like this:
new rpt? text !report

Initially  rpt?=“” .  If document  report  is nonempty, then initially  rpt??=⊤ .

If channel  c  is defined to have type  T , it holds a string of values of type  T , which is a value of 
type  *T .  A string of values can be read together in one pattern, so  c?  also has type  *T .  For 
example,

new nn? nat !5; 3; 4
defines  nn  as a channel that transmits natural numbers.  Then  nn? nil (:2*nat:) nil  reads  2  items 
from the channel, after which  nn? = 5; 3 .  If the definition had been

new nn? *nat !5; 3; 4
the result is the same, because  **T = *T .  Since  text = *char , channels  updown  and  rpt  could 
equally well have type  char .

At the beginning of a session (see Session), all persistent channels are redefined (reinitialized).  
Before any keyboard input has been keyed in,  keys?=“”  and  keys??=⊥ .

To use a channel for communication between concurrent programs, define the channel before the 
start of the concurrent programs.  Then one of the concurrent programs can write to the channel, and 
all the concurrent programs can read from the channel;  they read the same inputs independently.  If 
a program sequentially follows a concurrent composition, the sequentially following program begins 
reading on each channel after all the inputs read by all concurrent programs on that channel.  For 
example,

new c? nat! nil.  A||B.  D
On channel  c , program  D  begins reading after the last input read by  A  or  B .

new c? nat! nil.  x:= c? `assigns  x  to  nil
new c? nat! nil.  c? nil (:nat:) nil `infinite wait for input
new c? nat! nil.  c! 7.  c? nil (:nat:) nil.  x:= c? `assigns  x  to  7
new c? nat! nil.  ⟦c? nil (:nat:) nil.  x:= c?⟧ || c! 7 `assigns  x  to  7
new c? nat! nil.  c! 7.  c! 8.  c? nil (:nat:) nil.  x:= c? `assigns  x  to  7
new c? nat! nil.  c! 7.  ⟦c? nil (:nat:) nil.  x:= c?⟧ || y:= c? `assigns x to 7 and y to nil
new c? nat! nil.  c! 7.  ⟦c? nil (:nat:) nil.  x:= c?⟧ || ⟦c? nat.  y:= c?⟧ `assigns  x  and  y  to  7
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Plan

A plan is a program with a parameter.  There are five forms of plan.  The first is
plan simplename : data ⟦ program ⟧

The simplename is being defined as a constant parameter within the program.  It can be any simple 
name, even one that has already been defined in the current scope.  Its type (after the  : ) cannot 
make use of the parameter.  The scope of the parameter is from  ⟦  to  ⟧ .  For example,

plan y: real ⟦x:= x×y⟧
A plan can be argumented by adjacency in the same way that lists are indexed and functions are 
argumented.  The argument provides a value for the parameter.  For example,

plan y: real ⟦x:= x×y⟧ 3
is the same as

x:= x×3
Commonly, a plan is named

new P ⟦plan y: real ⟦x:= x×y⟧⟧
and then argumented  P 3 , but a plan is not required to have a name.

A program with  n+1  parameters is a program with  1  parameter whose body is a program with  n  
parameters.  For example, here is a program with two parameters.

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧
Each argument reduces the number of parameters.

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3 4
is equivalent to 

plan y: int ⟦z:= 3+y⟧ 4
which is equivalent to

z:= 3+4

A plan can be named (in a program definition or named-program);  a plan can be argumented;  and a 
plan can be the body of a plan.  A plan that is not fully argumented cannot be executed.  A plan that 
has been fully argumented can be used wherever any program can be used.  For examples,

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧.  z:= 2 `this is not allowed
plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3.  z:= 2 `this is not allowed
plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3 4.  z:= 2 `this is allowed

Here is a named-program to find the maximum value in nonempty list  L  in  log (#L)  time.  ( L  is a 
variable, and its initial value is destroyed in the process.)  We define  findmax  i j  to find the 
maximum in the segment of  L  from (including) index  i  to (excluding) index  j , reporting the result 
as  L i , and then apply it to  0 (#L) , which makes  L 0  the maximum value of the initial list.

findmax ⟦plan i: ☐L ⟦plan j: ☐L+1
                ⟦if j–i≥2 ⟦findmax i (div (i+j) 2) || findmax (div (i+j) 2) j.

      L:= i → L i  ∨  L (div (i+j) 2)   |   L⟧⟧⟧⟧ 0 (#L)

In the previous paragraphs, the parameter is a constant (note the  : );  it is not assignable.  It is “by 
initial value”, so

plan i: int ⟦x:= i.  y:= i⟧ (x+1)
assigns both  x  and  y  to the same value, one more than  x 's initial value.

The second form of plan
plan simplename := data ⟦ program ⟧

(note the  := ) defines a variable parameter.  For example,
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plan x:= int ⟦x:= 3⟧
A plan with a variable parameter applies to a variable argument.  But it cannot be applied to a 
variable appearing in the plan.  This restriction is required for reasoning about the plan.  This 
example plan can be applied to any variable, even one named  x , because that  x  (the argument) is 
nonlocal, and is not the local variable  x  (the parameter) appearing in the plan.  But the plan

plan x:= int ⟦x:= 3 || y:= 4⟧
cannot be applied to variable  y .

Here is a plan named  norm  to reduce rational  num/denom  to lowest terms.
new norm ⟦plan num:= nat+1 ⟦plan denom:= nat+1 ` normalize num/denom
                   ⟦new g:= gcd (|〈a: nat+1.  〈b: nat+1.  ` greatest common divisor of  a  and  b
                                            a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|) num denom.

                                 num:= num/g.  denom:= denom/g⟧⟧⟧
  If variables  x  and  y  have values  8  and  12 , then after  norm x y  they have values  2  and  3 .

The main use for variable parameters is probably to affect many files in the same way;  for example, a 
plan to sort the contents of files.

The next form of plan
plan simplename ! data ⟦ program ⟧

creates a plan with an output channel parameter.  For example.
plan c! text ⟦c! “abc”⟧

A plan with a channel parameter cannot be applied to a channel appearing in the plan.  This example 
plan can be applied to any output channel that receives text, even one named  c , because that  c  (the 
argument) is nonlocal, and is not the local channel  c  (the parameter) appearing in the plan.  But

plan c! text ⟦c! “abc” ||  d! “def”⟧
cannot be applied to channel  d .  The channel name  screen  cannot be omitted when used as an 
argument for an output channel parameter.

The next form of plan
plan simplename ? data ⟦ program ⟧

creates a plan with an input channel parameter.  For example.
plan c? text ⟦c?!d⟧

This plan applies to an input channel that delivers text, but not to a channel appearing in the plan.
plan c? text ⟦c?!d || d?!c⟧

cannot be applied to channel  d .  The channel name  keys  cannot be omitted when used as an 
argument for an input channel parameter.

The following program  pps  has three channel parameters.  On the first,  a , it reads the coefficients 
of a rational power series;  on the second,  b , it reads the coefficients of another rational power 
series;  on the last,  c , it writes the coefficients of the product power series.

new pps ⟦plan a? rat ⟦plan b? rat ⟦plan c! rat
     ⟦ a? nil (:rat:) nil || b? nil (:rat:) nil.  c! a?×b?.
        new a0:= a? || new b0:= b? || new d? rat !nil. 
            pps a b d
        ||  ⟦a? rat || b? rat.  c! a0×b?+a?×b0.

  loop ⟦a? nil (:rat:) nil || b? nil (:rat:) nil || d? nil (:rat:) nil.
            c! a0×b?+d?+a?×b0.  loop⟧⟧⟧⟧⟧⟧

The final form of plan
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plan simplename \ ⟦ program ⟧
creates a plan with a dictionary parameter.  This plan can be applied to any dictionaryname that does 
not appear in the plan.

Dictionary Definition

Dictionaries are the way you organize your programs and data.  There are two forms of dictionary 
definition.  The first form is

new newname \
The newname becomes a dictionaryname.  To create a new dictionary named  abc , write

new abc\
The newly created dictionary is empty.  Now you can define names within this dictionary.  For 
example,

new abc\x:= 2
defines  x  in dictionary  abc  to be the constant  2 .  This constant can then be used as  abc\x .  (It 
does not matter whether there are spaces before or after a backslash.)  A name being defined in a 
dictionary must not already be defined in that dictionary in the current scope.  If the current scope is 
a local scope, the name becomes undefined at the end of the scope, as usual.  Each name in a 
dictionary is defined, using the keyword  new  and a compound name, to be one of the following:  a 
variable name, a constant name, a data name, a program name, a channel name, a unit name, or a 
dictionary name.  To define new dictionary  def  within dictionary  abc  write

new abc\def\
When a name in a dictionary is defined to be a dictionary, this dictionary also can contain names, 
some of which can be defined as dictionaries, and so on.  So a dictionary can be a tree structure.  
Suppose there is a dictionary named  ProTem  within which there is a dictionary named  grammars  
within which there is a text named  LL1.  Its name is  ProTem\grammars\LL1 .

A name within a dictionary can be undefined by  old  in the same scope where it was defined (see 
Name Removal).  For example,  old abc\x  ends the definition of  x  in dictionary  abc .  In the scope 
where  abc  was defined,  old abc  ends the definition of dictionary  abc .  When a name becomes 
undefined, what it named remains in existence, anonymously, as long as something refers to it.  
When a dictionary becomes undefined, so do all the names within it.  Here is an example.

new stack\.
new stack\s: *nat:= nil.
new stack\push ⟦plan x: nat ⟦stack\s:= stack\s; x⟧⟧.
new stack\pop ⟦stack\s:= stack\s_(0;..↔stack\s–1)⟧.
new stack\top (|stack\s_(↔stack\s–1)|).
old stack\s

Dictionary  stack  now has three visible names in it:  push ,  pop , and  top .  Variable  s  still exists, 
but it is hidden.

The second form of dictionary definition is
new newname \ \ dictionaryname

We can create a dictionary named  parseStack  populated with the same definitions as  stack .  
new parseStack\\stack

It is equivalent to writing
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new parseStack\.
new parseStack\s: *nat:= nil.
new parseStack\push ⟦plan x: nat ⟦parseStack\s:= parseStack\s; x⟧⟧.
new parseStack\pop ⟦parseStack\s:= parseStack\s_(0;..↔parseStack\s–1)⟧.
new parseStack\top (|parseStack\s_(↔parseStack\s–1)|).
old parseStack\s

There is a dictionary in the persistent scope named  predefined  (see Predefined Names).

Measuring Unit Definition

There are three predefined units of measurement.  They are  g , representing mass in grams,  m , 
representing distance in meters, and  s , representing time in seconds.  A unit of measurement has all 
the properties of an unknown positive finite real number constant.  So, for example, we write    
10×m/s  for the speed 10 meters per second.  And we can define

new km:= 1000×m
to make  km  be a kilometer, and

new h:= 60×60×s
to make  h  be an hour.  So  1×m/s = 3.6×km/h  evaluates to  ⊤ .  To assign a variable to a quantity 
with units attached, the variable's type must have compatible units attached.  For example,

new speed: real×m/s:= 3.6×km/h
assigns  speed  to  1×m/s  (which could be written  m/s×1  or  m×1/s  or  1/s×m  or just  m/s ).  When 
the value  5×m/s  is converted to text by  quote , the result is  “5 m/s”  without the  ×  sign and 
without evaluating the unknown real value  m/s .  And  unquote “5 m/s” =  5×m/s .  Similarly for all 
units of measurement.  One more example:  quote (2×3×km/h) = “1.6667 m/s” .

You can define a new unit of measurement, unrelated to the existing units.  Measuring unit definition 
has the form

new newname #1
The newname becomes a unitname.  For example,

new sheet #1
defines a new unit of measurement called the  sheet .  Now you can define the related units

new quire:= 25×sheet.
new ream:= 20×quire

You can define a variable using the new units.
new order: nat×sheet:= 3×ream

This assigns  order  to  1500×sheet .  Another example is a monetary unit, such as
new dollar #1.
new cent:= dollar%

Forward Definition

Forward definition has the form
new newname

The newname becomes either a dataname or a programname.  For example
new mutual

is a notice that a definition of  mutual  will follow later in the same scope.  In a data definition or 
program definition, the scope of the name being defined starts with the definition.  A forward 
definition facilitates mutual recursion by starting the scope of a data name or program name even 
before its definition.  For example, leaving gaps for missing parts, in
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new f:= 3.  ⟦new f.  new g (|     f      g    |).  new f (|     f      g     |).        ⟧
the inner  f  and  g  are each defined in terms of both of them.  Without the forward definition of  f  
(following  ⟦ ),  g  would be defined in terms of the earlier constant definition  new f:= 3 .

Name Removal

Names defined with the keyword  new  can become undefined with the keyword  old .  Name 
removal has the form

old oldname
Ironically, by saying  old x , the name  x  becomes available for reuse as a new name.  Even though a 
name becomes undefined, what it named will remain as long as there is an indirect way to refer to it.  
For example, in predefined dictionary  rand  there are three names  next ,  Int , and  Real .  They 
might be defined as:

new rand\var: 0,..maxint:= 123456789.  `will be hidden
new rand\next ⟦rand\var:= mod (rand\var × 5^13) maxint⟧.
new rand\Int (|〈from: int.  〈to: int.  floor (from + (to–from)×rand\var/maxint)〉〉|).
new rand\Real (|〈from: real.  〈to: real.  from + (to–from)×rand\var/maxint〉〉|).
old rand\var

Variable  rand\var  is now hidden;  its name is undefined, but  rand\next ,  rand\Int , and  rand\Real  
still use it.  And  rand\Int 0 10  has the same value each time it is used until  rand\Next  is called.  So

rand\Int 0 10 + rand\Int 0 10  =  2 × rand\Int 0 10
has value  ⊤ .  Similarly for  rand\Real .

Synonym Definition

Synonym definition has the form
new newname oldname

The newname becomes a synonym for the oldname.  One use is to shorten all names that are deep 
within several dictionaries.  For example, if dictionary  a  contains dictionary  b , which contains 
dictionary  c , which contains dictionary  d , which contains variable  x , then

new  x   a\b\c\d\x
shortens the name  a\b\c\d\x  to just  x .  The definition

new  d  a\b\c\d
shortens all names within  a\b\c\d , for example, from  a\b\c\d\x  to  d\x .

Another use is to rename something.  To rename  a  to  b , write
new b a.  old a

The following sequence swaps the names  p  and  q .
new t p.  old p.  new p q.  old q.  new q t.  old t

Format

Although not part of the ProTem language, here are some suggested formatting (indentation) rules.  
The choice of alternative depends on the length of component data and programs.

A.  B for x: A ⟦B⟧
or A. or for x: A

B ⟦B⟧
------------------------------------ ------------------------------------
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A || B A + B
or    A or    A

|| B + B
------------------------------------ ------------------------------------

if A ⟦B⟧ else ⟦C⟧ value x: A:= B ⟦C⟧
or if A ⟦B⟧ or value x: A:= B

else ⟦C⟧ ⟦C⟧
or if A ------------------------------------

⟦B⟧ 〈x: A.  〈y: B.  C〉〉
else ⟦C⟧ or 〈x: A.  〈y: B.

------------------------------------   C〉〉
plan x: A ⟦B⟧ ------------------------------------

or plan x: A p ⟦A⟧
⟦B⟧ or p

⟦A⟧

More indentation would show the structure better, but it would crowd programs onto the right side of 
the page.  Consistent indentation improves readability, and is useful redundancy for error checking.  
(Python uses indentation as part of the syntax;  so in Python, indentation is not redundant and cannot 
be used for error checking.)

Commands

There are 11 commands in ProTem.  They are not presented in the grammar, and they cannot be part 
of a stored program.  A command may be given at any time;  it does not have to respect the 
grammatical structure of a program.  Each command is the control key combined with a letter.  The 
commands are:

ctl p pause or resume execution
ctl a abort execution
ctl v verify program according to a specification
ctl t turn type checking on or off
ctl s stop current session and start new session
ctl u undo current session
ctl e enter or exit editor for saved definitions
ctl d display source or object code for saved definitions
ctl n display names defined in current scope or persistent scope or in dictionary
ctl m attach or modify or retrieve memo to defined name
ctl c generate context comments

Pause

If there is a program being executed, the ctl p command pauses its execution.  If there is a paused 
program, ctl p resumes its execution.

Abort

Use ctl a to abort execution of the currently executing or paused program.
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Verify

The command ctl v starts a dialogue using  keys  and  screen  to determine the program, bracketed by 
program brackets  ⟦ ⟧  and named by a fancy name, for which verification is wanted.  The 
verification is then attempted.  (See Program Definition and Named-Program.)

Type Checking

Type checking means checking, during execution, that every variable assignment is to a value that is 
included in the type of the variable.  The ctl t command asks if you want type checking turned on or 
off.  It then stays that way until the next time you use ctl t .  Type checking is useful for debugging, 
but is redundant in a correct program.  At the start of a session (see Session), type checking is on.  
After verifying (see Verify), or when we are satisfied that all assignments are always to values 
included in their types, we can choose not to check types, resulting in faster execution.

Session

Sessions are defined for security and error recovery.  When the computer is turned on, a session 
begins.  When some idle time passes (how much time is a parameter of the system and may be set to 
infinity), a session ends and a new one begins.  When the computer is turned off, a session ends.  The 
ctl s command causes the current session to end and a new session to begin.  If there is a currently 
executing or paused program, ending the session asks if you want to abort it.

Sessions do not define the lifetime of definitions.  A definition in the persistent scope, outside all 
program bracket pairs  ⟦ ⟧ , lasts from the execution of the definition ( new ) to the execution of the 
corresponding name removal ( old ).  This may be less than a session, or more than a session.  
Turning off the computer should not cut the power instantly, but should first cause the values of any 
variables in the persistent scope to be saved in nonvolatile memory.

At the start of each session, a programmer must login.  This connects the programmer to their 
persistent scope.  Persistent channels ( keys ,  screen ,  microphone ,  speaker , and  printer ) are 
initialized and connected to the session.  Type checking is turned on.  The data definition  session , 
which is dependent on channel  keys , is a text consisting of all keystrokes since the start of the 
current session.  (This is quite practical:  an hour of hard work produces only 10 kbytes of 
keystrokes.)  This text can be saved as a record of work done, or for error recovery (see Undo).

Undo

The command ctl u undoes a session (except for inputs and outputs and  session ).  Implementing it 
requires capturing the state at the start of a session.  On many computers, returning to the prior state 
may be cheap;  nonvolatile memory (that does not require power) contains the state as it was at the 
start of the current session, and volatile memory (that requires power) contains the current state.  
After undo, you can capture the current value of  session , let us call it  recovery ,

new recovery: text:= session
then reassign  recovery , and then execute the result by writing  exec  recovery .  This gives us 
perfectly flexible error recovery for the modest cost of a keystroke file.
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Edit

The edit command ctl e is used to modify an existing persistent definition.  It invokes a dialogue 
using  keys  and  screen  to determine which definition.  It then invokes an editor.  In the editor, ctl e 
exits the editor, and asks if you want to throw away the old definition and save the new definition.  If 
you do want to save it, it is compiled.  If you want to create a definition using the editor, first create 
the definition, for example,  new p ⟦ok⟧ , and then invoke the editor to modify it.  If you want to 
delete a persistent definition, use  old .

Display

The command ctl d starts a dialogue using  keys  and  screen  to determine the name (simple or 
compound) of the persistent definition whose source or object code you want to view.

Names

The command ctl n begins a dialogue using  keys  and  screen  to determine whether you want the 
names defined in the current scope, the persistent scope, or in a (sub)dictionary.  In a (sub)dictionary 
you will see only the first-level names, not the names in its subdictionaries.

Memo

Each definition can optionally have a memo attached to it.  The memo might explain the purpose or 
use of the definition.  It is there to be read by a human, not for execution.  A memo is similar to a 
comment that you would make at the point of definition, but differs in that you can retrieve it 
anytime.  The command ctl m starts a dialogue using  keys  and  screen  to determine which name 
(simple or compound), whether you want to attach a new memo, modify an existing memo, or 
retrieve an existing memo.  For example, you may say that you want to attach the memo

This variable accumulates the sum of the products.
to name  x .  Asking for the memo attached to predefined name  e  prints

e:= 2.718281828459045 (approximately) constant  The base of the natural logarithms.

Context

The command ctl c starts a dialogue using  keys  and  screen  to determine the program, bracketed by  
⟦ ⟧ , for which context comments are wanted.  The comments are then generated.  These comments 
say which nonlocal names are used, and in what way they are used.  Here is the format.

`input: on these channels
`output: on these channels
`use: the values of these variables, constants, data names, units, and function names
`assign: these variables
`call: these program names and plan names
`refer: to these dictionaries

If there already are comments in this format, they are replaced.  For examples of context comments, 
see Example Programs.  Additionally, a programmer may want to include comments like

`spec: specification
`pre: precondition
`post: postcondition
`inv: invariant

but these are not generated by ctl c . 
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Predefined Names

The predefined names are defined in dictionary  predefined  in the persistent scope (see Scope).  
Predefined names can be redefined in a local scope.  For example, one of the predefined names is the 
imaginary number  i  (a square root of  –1 ).  You may also want to define a local variable  i .  If you 
do, you can still refer to the predefined  i  as  predefined\i  (unless you have covered the name  
predefined  with a local definition).  If predefined name  i  is covered by a definition in a scope 
outside the local scope where you are working, you can get back the simple name  i  as the 
imaginary number in these three ways:

new i:= predefined\i `constant definition
new i predefined\i `synonym definition
new i:= 0&1 `constant definition

The command ctl n lists the names in the  predefined  dictionary.  The command ctl m gets a 
description of a predefined name.  The collection of predefined names may change over time.

Each predefined name is one of:
variable at present, there are no predefined variables
constant evaluated;  not assignable
data unevaluated;  evaluation upon use;  not assignable
program unexecuted;  execution upon use
channel reinitialized at the start of each session
unit unrelated to other predefined units
dictionary at present, there is one predefined dictionary  rand

Some definitions use  §  (solutions, those) which is not part of ProTem;  it is defined in a Practical 
Theory of Programming.  Here are the predefined names.
   
abs: com→real  data  Absolute value.  abs x  =  sqrt (re x ^ 2 + im x ^ 2) .
all = com, char, bin, all, *all, [all]  data  All ProTem data values.
arc: com → §〈r: real.  0 ≤ r < 2×pi〉  data  The angle or arc of a complex number.
arccos: §〈r: real.  –1 ≤ r ≤ +1〉 → §〈r: real.  0 ≤ r ≤ pi/2〉  data  A trigonometric function.
arcsin: §〈r: real.  –1 ≤ r ≤ +1〉 → §〈r: real.  0 ≤ r ≤ pi/2〉  data  A trigonometric function.
arctan: real → §〈r: real.  0 < r < pi/2〉  data  A trigonometric function.
await  program  A plan with one constant parameter of type  real×s .  If the argument represents the 

present or a future time, its execution does nothing but takes time until the instant given by 
the argument.  If the argument represents the present or a past time, its execution does 
nothing and takes no time.  See  time  and  wait  and  s .

bin:= ⊤, ⊥  constant  The binary values.
bold: text→text  data  Same text but in bold font.
capital: char  constant  The English capital letters.  See  small  and  letter .
ceil: real→int  data  r ≤ ceil r < r+1
char  data  The characters.
charnat: char→nat  data  A one-to-one function with inverse  natchar .  The encoding might be 

extended ASCII or unicode.  Character combinations, for example shift-option-a, also have 
numeric encodings.

click: char  constant  The click character.
com = real&real  data  The complex numbers.
cos: real → §〈r: real.  –1 ≤ r ≤ +1〉  data  The trigonometric cosine function.
cosh: com→com  data  The hyperbolic cosine function.

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
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cursor: nat; nat  data  A data name whose value is the current cursor position.
definition: text→text  data  If the argument is the name of a persistent definition, then the result is the 

textual definition.  For example, if  combo  is defined as  new combo:= “10-20-30” , then  
definition “combo”  =  “combo:= “10-20-30”” .  Otherwise the result is the text  “undefined” .

delete: char  constant  The delete or backspace character.
digit:= “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”  constant  The decimal digits.
div: real → §〈r: real.  r>0〉 → int  data  div a d  is the integer quotient when  a  is divided by  d .

(0 ≤ mod a d < d) ∧ (a  =  div a d × d  +  mod a d)
doubleclick: char  constant  The doubleclick character.
drain  program  A plan with one input channel parameter.  Reads and discards any unread input.
e:= 2.718281828459045 (approximately) constant  The base of the natural logarithms.
end: char  constant  The end character.  It has zero width.  It is greater than all other characters.
even: int→bin  data  A function that says whether its argument is even.
exec  program  A plan with one text parameter.  If the argument represents a ProTem program, the 

execution is that of the represented program.  It “unquotes” its argument.  If applied to  
“x:= x+1” , the  “x”  refers to whatever  x  refers to at the location where  exec “x:= x+1”  
occurs.  If the argument does not represent a ProTem program, execution displays an error 
message on  msg .  To evaluate data represented as text, for example  “2+2” , use  unquote .

exp: com→com  data  The exponential function.  exp x = e^x .
false:= ⊥  constant  A binary value. 
find: all→all→nat  data  If  i  is an item in string  S , then  find i S  is the index of its first occurrence;  

if not, then  find i S = ↔S .
fit: int→text→text  data  If  i≥0  then  fit i t  is a text of length  i  obtained from  t  either by chopping 

off excess characters from the right end or by extending  t  with spaces on the right end.  If  
i≤0  then  fit i t  is a text of length  –i  obtained from  t  either by chopping off excess 
characters from the left end or by extending  t  with spaces on the left end.

floor: real→int  data  floor r ≤ r < 1 + floor r
g  unit  A mass of one gram.
i:= 0&1  constant  An imaginary number:  a square root of  –1 .
im: com→real  data  The imaginary part of a complex number.
infinity:= ∞  constant  An infinite number, greater than all other numbers.
int = nat, –nat  data  The integers.
italic: text→text  data  Same text but in italic font.
keys? char! “”  channel  To the program that monitors key presses, it is an output channel;  to all 

other programs, it is an input channel.
lb: §〈r: real.  r>0〉 → real  data  The binary (base  2 ) logarithm.
letter:= small, capital  constant  The English small and capital letters.
ln: §〈r: real.  r>0〉 → real  data  The natural or Napierian (base  e ) logarithm.
log: §〈r: real.  r>0〉 → real  data  The common (base  10 ) logarithm.
m  unit  A distance of one meter.
mail  channel  A text input and output channel for email.
match: all→all→nat  data  If  pattern  occurs within  subject , then  match pattern subject  is the 

index of its first occurrence.  If not, then  match pattern subject = ↔subject .
maxint: int  constant  The maximum representable integer (machine dependent).
maxreal: real  constant  The maximum representable real number (machine dependent).
microphone? *sound! silence  channel  To the microphone, it is an output channel;  to all other 

programs, it is an input channel.
minint: int  constant  The minimum representable integer (machine dependent).
mod: real → §〈r: real.  r>0〉 → real  data  mod a d  is the remainder when  a  is divided by  d .

(0 ≤ mod a d < d) ∧ (a  =  div a d × d  +  mod a d)
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movie = *picture  data  A string of pictures.
msg? text! “”  channel  A channel for displaying messages from the ProTem implementation.
nat = 0,..∞  data  The natural numbers.
natchar: nat→char  data  A one-to-one function with inverse  charnat .  The encoding might be 

extended ASCII or unicode.  Character combinations, for example shift-option-a, also have 
numeric encodings.

nil  constant  The empty string.
nl: char  constant  The new line or next line or return or enter character.
null  constant  The empty bunch.
numpat: text  constant  A text pattern for numbers, useful for reading a number from a text channel.
odd: int→bin  data  A function that says whether its argument is odd.
ok  program  A program whose execution does nothing and takes no time.
ord = real, char, bin, all, *ord, [ord]  data  The ordered type, for which  ∧  ∨  <  >  ≤  ≥  are defined.
pi:= 3.141592653589793 (approximately)  constant  The ratio of a circle's circumference to its 

diameter.
picture = [x*[y*(0,..z)]]  data where  x  is the number of pixels in the horizontal dimension,  y  is the 

number in the vertical dimension, and  z  is the number of pixel values.
plain: text→text  data  Same text but not italic, not bold, and not underlined.
point  data  A function that applies to a list and gives its deep domain (a bunch of strings of indexes).  

It is a signal to the implementation that the strings in it will be used only as indexes to the 
list.  It can therefore be implemented as a memory address (pointer).

pre: char→char  constant  The character predecessor function.  pre “b” = “a” ;  pre “ ” = “ ”
printer? text! “”  channel  To the printer, it is an input channel;  to all other programs, it is an output 

channel.
ProTem: text  constant  This document.
quote: all→text  data  produces a text representation of its argument.  The argument is evaluated 

before quoting.  See  unquote  and  realtext .
rand \  dictionary  containing three definitions.

next  program  Assigns a hidden variable to the next value in a random sequence.
Int: int→int→int  data  A function that is dependent on a hidden variable, and is

reasonably uniform over the interval from (including) the first argument to 
(excluding) the second argument.

Real: real→real→real  data  A function that is dependent on a hidden variable, and is
reasonably uniform over the interval between the arguments.

rat = int/(nat+1)  data  The rational numbers.
re: com→real  data  The real part of a complex number.
real  data  The real numbers including  ∞  and  –∞ .
realtext: nat→nat→nat→real→text  data  Format a real number.  realtext d e w r  is a text 

representing real  r  with the final digit rounded.  d  is the number of digits after the decimal 
point;  if  d=0  the point is omitted.  e  is the number of digits in the exponent;  if  e>0  the 
decimal point will be placed after the first significant digit;  if  e=0  the  ^^  is omitted and the 
decimal point will be placed as necessary.  w  is the total width;  if  w  is greater than 
necessary, leading blanks are added;  if  w  is less than sufficient, the text contains blobs.
realtext 4 1 10 pi = “ 3.1416^^0”      realtext 2 0 6 (–pi) = “ –3.14”
realtext 0 0 3 5 = “  5”      realtext 0 0 3 (–5) = “ –5”      realtext 0 0 2 123 = “• •”
See  quote .

round: real→int  data  r–0.5 ≤ round r < r+0.5
s  unit  A time of one second.
screen? text! “”  channel  To the screen, it is an input channel;  to all other programs, it is an output 

channel.
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session: text  data  The join of all texts from channel  keys  since the start of a session.
sign: real → (–1, 0, 1)  data  The sign of a real number.
silence: sound  data  The silent sound.
sin: real → §〈r: real.  –1 ≤ r ≤ +1〉  data  The trigonometric sine function.
sinh: com→com  data  The hyperbolic sine function.
small: char  constant  The English small letters.  See  capital  and  letter .
sort  program  A plan with one variable parameter of type  *ord .  Sorts in nondecreasing order.
sound  data  The sounds.
speaker? *sound! silence  channel  To the speaker, it is an input channel;  to all other programs, it is 

an output channel.
sqrt: com→com  data  The principal square root.  4^(1/2)  =  2, –2  but  sqrt 4  =  2 .
stop  program  Its execution does nothing and takes forever so that no computation can follow.
sub: all→nat→nat→all→all  data  sub s n m t  is a string formed from string  s  by replacing the 

substring from index  n  to index  m  with string  t .  The substring being replaced  s_(n;..m)  
does not have to be the same length as the string  t  replacing it.  If  n=m  this is insertion.  If  
t=nil  this is deletion.  sub s n m t  =  s_(0;..n); t; s_(m;..↔s)

subst: all→all→all→all  data  subst s x y  is a string formed from string  s  by replacing all 
occurrences of item  x  with item  y .

suc: char→char  constant  The character successor function.  suc “a” = “b” ;  suc end = end
tab: char  constant  The tab character.
tan: real→real  data  The trigonometric tangent function.
tanh: com→com  data  The hyperbolic tangent function.
text = *char  data  The character strings.
texttime: text→(real×s)  data  If the argument represents a time, possibly preceded by space, tab, and 

new line characters, possibly followed by space, tab, and new line characters, the result is the 
represented time in seconds since 2000 January 1 at 0:00 UTC (the midnight that begins 
2000 January 1 at longitude 0).  Times before then are negative.  For example,  
texttime “1947 September 16 at 14:24:32.5 UTC–5” = –68675727.5×s .  Otherwise the result 
is  –∞×s .  See  timetext .

time: real×s  data  A data name whose value depends on a clock.  It gives the current time in seconds 
since 2000 January 1 at 0:00 UTC (the midnight that begins 2000 January 1 at longitude 0).  
Times before then are negative.

timetext: (real×s)→(–12,..12)→text  data  Given the time in seconds since 2000 January 1 at 0:00 
UTC (the midnight that begins 2000 January 1 at longitude 0), and a time zone, the result is a 
readable text.  Times before then are negative.  See  texttime .  For example,
timetext (–68675727.5×s) (–5)  =  “1947 September 16 at 14:24:32.5 UTC–5”

trim: text→text  data  A text formed from the argument by removing all leading and trailing space, 
tab, and new line characters.

true:= ⊤  constant  A binary value.
underline: text→text  data  Same text but underlined.  Any part of the text that is already underlined 

is underlined again.
unquote: text→all  data  If the argument represents a ProTem data expression, the result is the value 

of the represented data.  The argument is evaluated after unquoting.  If the argument does not 
represent a ProTem data expression, the function is not evaluated.  See  quote .

wait  program  A plan with one constant parameter of type  real×s .  If the argument is nonnegative, 
its execution does nothing and takes the time given by the argument.  If the argument is 
nonpositive, its execution does nothing and takes no time.  See  await  and  time  and  s .
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Miscellaneous

The ProTem equivalent of enumerated type is shown here.
new brush: “red”, “green”, “blue”:= “red”

or new color:= “red”, “green”, “blue”.
new brush: color:= “red”

The ProTem equivalent of the record type (structure type) is as follows.
new p: “name” → text  | “age” → nat := “name” → “Josh” | “age” → 16

or new person:= “name” → text  | “age” → nat.
new p: person:= “name” → “Josh” | “age” → 16

The fields of  p  can be selected by data that evaluates to text, for example
p “name”

is the text  “Josh” .  The value of  p  can be changed using a function arrow and selective union.
p:= “name” → “Amanda” | “age” → 2.
p:= “age” → 3 | p

We can even have a whole file (string) of records and join new records onto its end.
new file: *person:= nil.
file:= file; p

When the predefined function  point  is applied to a list argument, it yields the deep domain of the 
list.  For example,

point [10; [11; 12]; 13]   =   0 ,  1;(0, 1) ,  2   =   0 ,  1;0 ,  1;1 ,  2
When used as a type or as part of a type,  point  is unusual;  it does not quite obey the language rules.  
For example, we can define a linked list  G  as follows.

new G: [*(“name” → text | “next” → point G)]:= [“name” → “Alice” | “next” → 0].
new current: point G:= 0

Contrary to the rule, the type mentions  G , the variable being defined.  The occurrences of  point G  
are the deep indexes of  G  at all times, not just at the time the definition is executed.  The use of  
point  is a signal to the implementation that its strings of natural numbers will be used only as 
indexes into  G  (and the implementation will check that this is so).  Therefore they can be 
implemented as memory addresses, giving us the efficiency of pointers.  The initial value of  G  is a 
list of length  1 , so initially the only possible value of  G 0 “next”  is  0 , and the only possible value 
of  current  is  0 .  Now suppose  G  is reassigned as follows:

G:= [“name” → “Bob” | “next” → 1];; G
Then  G  has length  2 , so  G 0 “next”  can have value  0  or  1 .  Similarly  current  can have value  
0  or  1 , so the assignment

current:= current+1
can now be made, but the assignment  current:= current+2  cannot be made at this time.  It is 
possible that an assignment to  G  may make the values of  G 0 “next”  and  current  illegal, which is 
a flaw in this use of  point  known as a “dangling pointer” or “dangling reference”.  This use of  point  
is unsafe, and that is the price for pointer efficiency.

The previous example, with linked list  G , does not show the full generality of  point .  Here is a 
tree-structured example.

new t: tree (|[nil], [tree; nat; tree]|):= [nil].
new p: point t:= nil

If tree  t  gains some branches, for example,
t:= [[[nil]; 2; [[nil]; 5; [nil]]]; 3; [[nil]; 7; [nil]]]

we can move  p  down to the left in the tree with the assignment
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p:= p; 0
and move it down to the right with the assignment

p:= p; 2
Thus  p  is a string of indexes indicating a subtree  t@p  of  t .  We can replace this subtree with tree  
s  using the assignment

t:= p → s | t
We can express the information at the node indicated by  p  as

t@p 1     or     t@(p; 1)
and we can replace the information at this node with the integer  6  using the assignment

t:= (p;1) → 6 | t
To move up in the tree, we just remove the final item of  p 

p:= p_(0;..↔p–1)

The “procedure”, “method”, or “function” of some other programming languages is a combination 
of naming, scope, and parameter(s).  For example,

new transform ⟦plan magnification: real ⟦plan translation: real
 ⟦x:= magnification×x + translation⟧⟧⟧

Here is a definition of a plan with one parameter
new translate ⟦transform 1⟧

formed by providing one argument to a two-parameter plan.  To provide an argument for just the 
second parameter is a little more awkward, but not too bad.

new magnify ⟦plan magnification: real ⟦transform magnification 0⟧⟧
We can now obtain a three-times magnification of  x  in either of these ways:

magnify 3  or  transform 3 0

In some other programming languages, the “function” is a combination of naming, scope, 
parameter(s), and value-data.  For example,

new factorial (|〈n: nat.  value f: nat:= 1 ⟦for i: 1;..n+1 ⟦f:= f×i⟧⟧〉|)

Exception handling is provided by  |  or  if  or  ⊨ ⫤ .  For example,
new divide (|〈dividend: com.  〈divisor: com.  divisor=0 ⊨ “zero divide” ⫤ dividend/divisor〉〉|)

Then
divide: com → com → (com, “zero divide”)

The selective union operator applies its left side to an argument if that argument is in the stated 
domain of its left side;  otherwise it applies its right side.  Let us define

new weekday:= 〈d: 0,..7.  1≤d≤5〉
Then if  i  fails to be an integer in the range  0,..7  in the expression

(weekday | all→“domain error”) i
the left side of  |  “catches” the exception and “throws” it to the right side, where it is “handled”.

Input choice, as in CSP, can be programmed round-robin as follows.
inputchoice ⟦if c?? ⟦c? nil (:numpat:) end. P⟧
                     else ⟦if d?? ⟦d? nil (:numpat:) end. Q⟧

    else ⟦inputchoice⟧⟧⟧

In the persistent scope, ProTem functions as an operating system, where programs are executed as 
soon as they are entered.  Unix directories are dictionaries.  Unix files are variables.  Unix cp is an 
assignment.  Unix rm is ProTem's  old .  Unix mv is a synonym definition followed by  old .  Unix ls 
and man commands are ctl n and ctl m .  The effect of Unix pipes is obtained by channel parameters.  
For example, suppose  trimmer  is a plan to trim off leading and following blanks and tabs from lines v v
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of text, and  enumerate  is a plan to number lines.
new trimmer ⟦plan in? text ⟦plan out! text
                        ⟦loop ⟦if in?? ⟦in? nil (:text:) nl.  out! trim (in?); nl.  loop⟧⟧⟧⟧⟧.
new enumerate ⟦plan in? text ⟦plan out! text
                            ⟦new n: nat:= 0.

      loop ⟦if in?? ⟦in? nil (:text:) nl.  out! n; “ ”; in?; nl.  n:= n+1.  loop⟧⟧⟧⟧⟧
We can feed the output from  trimmer  to the input of  enumerate  by defining a channel for the 
purpose.  If the original input comes from  keys , and the final output goes to  screen , then

new pipe? text! “”.  trimmer keys pipe.  enumerate pipe screen.  old pipe
Even better:

new pipe? text! “”.  trimmer keys pipe || enumerate pipe screen.  old pipe
If  enumerate  wants input before it is available from  trimmer ,  enumerate  waits.  If  trimmer  
sends output before  enumerate  wants it, it is buffered.

Unix mail is ProTem's  mail  channel.  If you are the creator of the definition of  something  in the 
persistent scope, and you want to send it to  someone  for them to make changes, then

mail! “To: someone@address.domain”; nl; definition “something”
(see predefined  definition ).  When  someone  sends back the changed definition, receive it, delete 
your old definition, and then redefine it (see predefined  exec ) by

mail? “” (:text:) end.  old something.  exec (mail?)

An implementation may provide plans for a variety of languages.  For example, it may provide a 
plan named  Python  , with one text parameter, whose execution is that of the Python fragment 
represented by the argument.  It may provide  asm , whose execution is that of the assembly-
language program represented by the argument.

ProTem considers object orientation to be a programming style, rather than a programming-language 
style, or collection of language features.  Object-oriented programming (as a style of programming) 
can be done in ProTem.  Data structures, and the functions and procedures that access and update 
them, can be defined together in one dictionary.  If many “objects” of the same type are wanted, new 
dictionaries just like old ones are easily defined using  \\  (see  parseStack  in Dictionary Definition).

To execute a program stored on someone else's computer, just invoke that remote program using its 
full address (computername and programname).  For efficiency, it might be best to compile that 
remote program for your own computer and run it locally.  Any nonlocal names (variables, channels, 
and so on) refer to entities on the computer where the program is compiled.

I would prefer to use the symbols  ↑   and  ↓   for maximum and minimum as in unified algebra, 
rather than  ∨  and  ∧ .  But  ↑  and  ↓  are not the tradition for binary disjunction and conjunction, 
nor for set union and intersection, and there are no good keyboard substitutes for them.  As it is, the 
ordering symbols  ∨ ∧ < > ≤ ≥  are nicely related.  

In ProTem, a text is written with quotation marks.  An attractive alternative to quotation marks is 
underlining.  For example, the text  “abc”  would instead be written  abc .  It is a good-looking 
syntax, but awkward to key in, so quotation marks could be the keyboard substitute.  (The empty text 
would be  nil , string indexing would not be underscore, and  quote  and  unquote  would be renamed  
textify  and  eval .)  I have used underlining in ProTem just for quotation marks within a text;  for 
example,  “Just say “no”.” .  This would become  Just  say “no”. , with no exception needed for 
quotation marks within a text.  In ProTem, if you want an underlined quotation mark within a text, 
you have to underline it again.  And so on.  Thus every character can occur within a text.  In the 

http://www.cs.utoronto.ca/~hehner/BAUA.pdf
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alternative notation, no special rule is needed.  Underlining presents a theoretical (but not practical) 
limitation:  we cannot write a self-reproducing text (try).  We can write a self-reproducing text with 
quotation marks, repeating the left and right quotation marks as characters within a text.  For 
example,  “Just say ““no””.” .  Using this convention, here is a self-reproducing text:

“““_(0;0;(0;..32);31;31;(1;..31))”””_(0;0;(0;..32);31;31;(1;..31))
Perform the indexing to see what you get.

In the Presentation Grammar, the case-program has the form
case data ⟦ program ⟧

with the program form
program ⟧ ⟦ program

to make more cases.  Although it is correct, it is not a clear presentation of
case data ⟦ program ⟧ ⟦ program ⟧ ⟦ program ⟧

and so on.  A clear presentation requires another nonterminal, as in the LL(1) Grammar and LR(0) 
Grammar.  My principle is that the Presentation Grammar has only two nonterminals (program and 
data), but the case-program stretches that principle rather thin.  Furthermore, the program form

program ⟧ ⟦ program
is the only program or data form whose use is confined to a single context, and I am unhappy to have 
any program or data form that cannot be used more generally.

There is both a one-tailed  if  and a two-tailed  if  in ProTem, but there is no dangling-else problem.

Sounds and pictures are data structures.  This part of ProTem is not yet designed.  Perhaps a picture 
is an element of  [x*[y*(0,..z)]]  where  x  is the number of pixels in the horizontal direction,  y  is the 
number of pixels in the vertical direction, and  z  is the number of pixel values.  A picture could 
therefore be expressed in the same way as any other two-dimensional array, and one could refer to 
the pixel in column  3  and row  4  of picture  p  as  p 3 4 .  Perhaps a movie is a string of pictures.  
The operations on movies would be those of strings, such as substring and join.  To help in the 
creation of movies, one of the pixel values should be transparent, and one of the operations on 
pictures should be overlaying.  Predefined  silence  is a sound, and predefined  sound  is all sounds.  
Sounds are input on channel  microphone ;  pictures are input on channel  camera .  A constant can 
be defined as a sound or picture.  A variable can be assigned to a sound or picture.  Sounds and 
pictures can be included in a data structure, and manipulated using the operators on that data 
structure.  Sounds can be output on channel  speaker .  Channel  screen  must be modified so pictures 
can be output on channel  screen .

Intentionally Omitted Features

Each of the following omitted features would be a small syntactic convenience, and would be easy to 
add to the language.  But they would make the language larger, and that would be a cost.  And they 
would move away from the form needed for verification.  So they are not included in ProTem.

assertion
assert x≤y means if –(x≤y) ⟦! “assert failure”.  stop⟧

name grouping
new x, y: int:= 0 means new x: int:= 0 || new y: int:= 0
old x, y means old x || old y
x, y:= 0 means x:= 0 || y:= 0
〈a, b: nat.  a+b〉 means 〈a: nat.  〈b: nat.  a+b〉〉
plan a, b: nat ⟦x:= a+b⟧ means plan a: nat ⟦plan b: nat ⟦x:= a+b⟧⟧
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item assignment
S_3:= 5 means S:= S⊲3⊳5
L 3:= 5 means L:= 3→5 | L
A 3 4:= 5 means A:= (3;4)→5 | A

loop constructs
while n>0 ⟦n:= n–1⟧ means while ⟦if n>0 ⟦n:= n–1.  while⟧⟧
repeat ⟦n:= n–1⟧ n=0 means repeat ⟦n:= n–1.  if –(n=0) ⟦repeat⟧⟧
loop ⟦n:= n–1.  if n=0 ⟦exit 1⟧.  loop ⟦m:= m–1.  if m=0 ⟦exit 2⟧ else ⟦exit 1⟧⟧⟧ 
             means      loop ⟦n:= n–1.  if –(n=0) ⟦m:= m–1.  if –(m=0) ⟦loop⟧⟧⟧

return from named-program
name ⟦some.  if n=0 ⟦return name⟧.  more⟧
             means      name ⟦some.  if –(n=0) ⟦more⟧⟧

The assignment  L:= 3→5 | L  should be compiled the same as  L 3:= 5  would be if it were included 
in ProTem;  the list  L  should not be copied.  The same for string item assignment.  In the loop

while ⟦if n>0 ⟦n:= n–1.  while⟧⟧
the last-action (tail recursive) call should be compiled as a branch instruction, with no stack activity, 
the same as a while-loop would be if it were included.  The same for other loop constructs.  Omitting 
item assignment and looping constructs should not cost execution time or space.

Plans with parameters and arguments of type program
plan simplename ⟦ program ⟧ plan, parameter is program
program program plan, program argument

were considered and rejected due to syntactic and semantic ambiguities.

As a counterpart to the Unix cd command, I considered
open dictionaryname
close dictionaryname

to allow names in that dictionary to be referred to without stating the dictionary.  For example, if we 
have dictionary  abc , and within it names  x  and  y , we refer to these names as  abc\x  and  abc\y .  
By saying  open abc  we can then refer to them as just  x  and  y .  But the interaction between  open  
and scope is complex, we can already refer to names within  predefined ,  and we can shorten names 
by synonym definition, so I left out  open  and  close .

The syntax
new abc\\def

defines a new dictionary  abc  populated with the definitions from existing dictionary  def .  Perhaps 
it should instead add the definitions of existing dictionary  def  to existing dictionary  abc .  At 
present, there is no way to do that.  If I were to make this change, there would still be a way to define 
a new dictionary populated with definitions from an existing dictionary:

new abc\.  new abc\\def
But I would have to decide how to resolve duplicate definitions.  I am guessing that we always want 
to populate a new dictionary, not further populate an existing one.

There is no frame construct in ProTem, but ctl c serves a similar purpose.  In some languages there is 
a module or object construct for the purpose of grouping together related definitions.  In ProTem, 
dictionaries serve that purpose.

In order to allow sharing of variables in the persistent scope, I created a personal identity type and a 
scheme of permits to say who can use and change what.  The scheme was more flexible than Unix 
chmod, and I was quite pleased with it.  But with sharing, all mathematical reasoning is invalid;  x=x  
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might evaluate to  ⊥ .  And with sharing, locks are required so that assignments do not interfere with 
uses, and assignments do not interfere with other assignments.  Sharing problems are solved by the 
use of channels:  anyone can email anything to anyone else;  any program can send anything to any 
other program on a channel.  So, even though it hurts to leave out something I worked hard on, 
identities and shared variables are intentionally omitted.

Two binary operators  ∆  (nand) and  ∇  (nor) are missing.  They are not wanted very often, there are 
no good keyboard substitutes for them, and they are easily synthesized: 

x∆y = –(x∧y)               x∇y = –(x∨y)

The empty program, denoted by nothing, whose execution does nothing and takes no time, is easy to 
add to ProTem.  With it, we can almost always consider the period ( . ) to be a program terminator, 
rather than an infix connective.  But there is one context where it causes confusion.

A. || B.
looks like program  A  (terminated with a period) is in parallel with program  B  (terminated with a 
period).  But, according to the order of execution, the empty program is in parallel with  B , as in

A. ⟦ || B⟧.
So I have not included the syntactically empty program in ProTem, providing instead the predefined 
program  ok  whose execution does nothing and takes no time (as in aPToP).

I am tempted to omit both
if data ⟦ program ⟧
case data ⟦ program ⟧

and insist that both  if  and  case  always have an  else , but so far they remain in ProTem.

Implementation Philosophy

Some expressions do not need to be evaluated, and some cannot be evaluated.  For examples,
! –3 `prints  –3
! [0; 1] 2 `should print  [0; 1] 2
! [0; 1] 2 = [0; 1] 2 `should print  ⊤
! 4^(1/2) `should print  2, –2
! 1/0 `should print  1/0
! 0/0 `should print  0/0
! 1/0 = 1/0 `should print  ⊤ 
! 〈r: rat.  5〉 (1/0) `should print  5

ProTem does not evaluate the application of the negation operator  –  to the operand  3  (see Number 
Representation);  it just prints the operator and operand.  Similarly other expressions that cannot be 
evaluated should just print the expression.  Due to the difficulty of implementation, it is permissible 
for an implementation to behave differently.

No programming language has ever been, nor will ever be, implemented entirely.  Every 
programming language is infinite;  every implementation is finite.  There is always a program too big 
for the implementation.  There is a multitude of size limitations:  the parse stack might overflow, the 
dictionary (symbol table) might be too small, the forward branch fixup list might be exceeded, and 
so on.  It would be ugly to define a programming language by listing all the size limitations of 
programs.  And it would be counter-productive because it would exclude implementations that can 
accommodate larger programs.

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/NR.pdf
http://www.cs.utoronto.ca/~hehner/NR.pdf
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Whenever a program exceeds a size limitation, the implementation should not say “Error: limitation 
exceeded.”, because the program is not in error.  The implementation should say “Apology: this 
implementation is too limited to accommodate your program.”.  An “error” message tells a 
programmer to correct the error;  there is no other option.  An “apology” message gives the 
programmer 3 options:  change the program to live within the limitation;  change the implementation 
options to increase the limit that was exceeded;  take the program to a different implementation.

Natural numbers and integers are usually limited to those that are representable in a specific number 
of bits, for example, 32 bits.  This is a size limitation, just the same as other size limitations.  It is 
more complicated and uglier to define arithmetic within finite limitations than to define the naturals 
and the integers.  And it is counter-productive to do so, because it excludes an implementation with 
64-bit arithmetic.  As with other implementation limitations, numeric overflow should not get an 
“error” message;  it should get an “apology” message.

Floating-point numbers and arithmetic should never be offered as a language feature.  The 
programmer wants rational or real numbers and arithmetic, but may be willing to accept the floating-
point approximation for the sake of efficiency.  Floating-point, with a specific number of bits, is an 
implementation limitation.  Any alternative to floating-point that increases the accuracy without 
taking too much time or space should be welcome.

ProTem is a rich programming system, offering many kinds of data and operators on data, and many 
ways to structure a computation.  Some features may be difficult to implement.  And some features 
may be of little use to most programmers.  It may be a wise decision not to implement some features.  
For example, an implementer might decide that in a variable definition, the type must be one of

int   rat   bin   text   [n*type]    
where  n  is a natural number and  type  is any of these types just listed.  An implementer may decide 
not to implement concurrent execution.  No-one can complain that the complete language is not 
implemented, since it is impossible to completely implement any language.  But ProTem is defined 
to allow all type expressions that make sense, and to allow concurrency, so the next implementation 
can accommodate programs that previous implementations could not accommodate.

Example Programs

Portation Simulation

new simport ` a program to simulate portation 
⟦ `input: keys

`output: screen
`use: ceil m nat nil nl point real s sqrt time
`call: await stop
`refer: rand

` Distance between control boxes is always 1 m.
` Merges do not overlap, so there is at most 1 corresponding box on the merging portway.
` Each divergence has a left branch and a right branch;  there is no straight.
` Leading to a divergence, boxes record only one square speed.

` start of definitions

new km:= 1000×m.  new h:= 60×60×s.  ` kilometer and hour

http://www.cs.utoronto.ca/~hehner/ratno.pdf
http://www.cs.utoronto.ca/~hehner/Portation.pdf


ProTem                                           started 1987 May 22                version of 2023 December 14 page 47

new maxaccel:= 1.5×m/s/s.  ` maximum deceleration = –maxaccel
new speedlimit:= 60×km/h. ` speed limit is 60 km/h everywhere
new cushion:= 1×s.  ` reaction time for all porters
new impatience:= 10/s.  ` acceleration factor
new maxdistance:= ceil (speedlimit^2 / (2×maxaccel)).  ` max search distance ahead
new numporters:= 120.  new numboxes:= 7480.
new visualDelayTime:= 0.5×s. ` for human viewing

new porter.  ` so porter can be referenced before it is defined

new box:  [numboxes *((“ahead left”, “ahead right”, “behind left”, “behind right”) → point box
| “beside” → point box
| “above” → (point porter, numporters)
| (“horizontal”, “vertical”) → nat )] ` box position on screen

            := [numboxes * ((“ahead left”, “ahead right”, “behind left”, “behind right”) → 0
| “beside” → 0
| “above” → numporters ` indicates no porter above

      | (“horizontal”, “vertical”) → 0 )].

new porter:  [numporters * (“below” → point box  ` what is beneath
| “arrival time” → (real×s)  ` arrival time at this box
| “speed” → (real×m/s))]    ` current speed

                 := [numporters * (“below” → 0
      | “arrival time” → (0×s)
      | “speed” → (0×m/s))].

new draw ⟦plan b: nat ⟦plan c: “grey”, “blue”, “red” ⟦UNFINISHED⟧⟧⟧. `end of draw
` draws a box at screen position (box b “horizontal”) (box b “vertical”) of color c.
` “grey” means no porter present, “blue” means porter present, “red” means crash

                            ` UNFINISHED because graphical output has not yet been designed

` end of definitions, start of initialization

for b: 0;..numboxes
⟦ ! “What box is ahead-left of box ”; b; “? ”.  ?!.

box:= (b; “ahead left”) → ? | (?; “behind left”) → b | box.
! “What box is ahead-right of box ”; b; “? ”.  ?!.
box:= (b; “ahead right”) → ? | (?; “behind right”) → b | box.
! “What box is beside box ”; b; “? ”.  ?!.
box:= (b; “beside”) → ? | box.
! “What are the horizontal and vertical coordinates of box ”; b; “? ”.
?!.  box:= (b; “horizontal”) → ? | box.
?!.  box:= (b; “vertical”) → ? | box.
draw b “grey”⟧. ` default color; may be changed below

for p: 0;..numporters
⟦ ! “Porter ”; p; “ is over what box? ”.  ?!.

porter:= (p; “below”) → ? | porter.  box:= (?; “above”) → p | box.
draw (?) “blue”⟧.
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` end of initialization, start of simulation

infiniteLoop
⟦ new iterationStartTime:= time.  ` the time of the start of each iteration of the infiniteLoop

new p: point porter:= 0.  ` p:= the porter that arrived at its current position first
new t: real×s:= ∞×s. ` t is a time, initially an infinite time
for q: 0;..numporters ⟦if porter q “arrival time” < t ⟦t:= porter q “arrival time”.  p:= q⟧⟧.
old t.

new b:= porter p “below”.  ` the box below porter p
new bb:= box b “beside”.  ` the box beside b; if none then bb=b
new boxesToDo: *[point box; nat×m]:= nil.

` queue of boxes to be explored; their distances ahead of porter p
` queue is sorted by increasing distance ahead
` difference between any two distances in the queue is at most 1

` initialize boxesToDo
if bb = b ⟦boxesToDo:= nil⟧
else ⟦if box bb “above” = numporters ⟦boxesToDo:= nil⟧

else ⟦if porter (box bb “above”) “speed” < porter p “speed” ⟦boxesToDo:= nil⟧
else ⟦boxesToDo:= [bb; 0×m]⟧⟧⟧.

boxesToDo:= boxesToDo; [box b “ahead left”; 1×m].
if box b “ahead left” ≠ box b “ahead right” ⟦boxesToDo:= boxesToDo; [box b “ahead right”; 1×m]⟧.
old b.  old bb.

new accel: real×m/s/s:= maxaccel.  ` acceleration for porter p

` using boxesToDo calculate accel for porter p

nextBox ⟦new b:= (boxesToDo_0) 0. `the box we are looking at
new d:= (boxesToDo_0) 1. `its distance ahead of porter p
boxesToDo:= boxesToDo_(1;..↔boxesToDo).
if d≤maxdistance
⟦new desiredspeed `according to porter pa

   (|〈pa: point porter, numporters.
       pa=numporters ⊨ speedlimit 
       ⫤ (    sqrt (    porter pa “speed”^2 + 2×maxaccel×d

                + (maxaccel×cushion)^2 )
                             – maxaccel×cushion)  ∧  speedlimit〉|).
  accel:=   (   (   (  (  desiredspeed (box b “above”) 

      ∧ desiredspeed (porter (box b “beside”) “above”))
    – porter p “speed”)
 × impatience)

          ∨  –maxaccel)  ∧  maxaccel.
  if box b “above” = numporters = porter (box b “beside”) “above”
  ⟦ ` add boxes ahead to queue and continue

  boxesToDo:= boxesToDo; [box b “ahead left”; d+1×m].
  if box b “ahead left” ≠ box b “ahead right”
  ⟦boxesToDo:= boxesToDo; [box b “ahead right”; d+1×m]⟧.
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  nextBox⟧
else ⟦if ↔boxesToDo > 0 ⟦nextBox⟧⟧⟧⟧.

old boxesToDo.

` using accel, move porter p ahead one box
new b: point box:= porter p “below”.
box:= (b; “porter”) → numporters | box.  draw b “grey”.
rand\next.  b:= box b (rand\Int 0 2 = 0 ⊨ “ahead left” ⫤ “ahead right”).
if box b “porter” < numporters ⟦draw b “red”.  stop⟧.  ` crash
porter:= (p; “below”) → b | porter.  box:= (b; “above”) → p | box.  draw b “blue”.
old b.
new speed:= sqrt (porter p “speed”^2 + 2×accel×m) ∧ speedlimit.
porter:=   (p; “arrival time”) →  (porter p “arrival time” + 2×m/(porter p “speed” + speed))

    | (p; “speed”) → speed
    | porter.

old speed.  old accel.  old p.  `these olds are not really necessary
await (iterationStartTime+visualDelayTime).
infiniteLoop⟧⟧ `end of simport

Quote Notation Lengths

` program to compare quote notation lengths with numerator/denominator lengths

`output: screen
`use: bin div even nat odd

new shl (|〈n: nat.  〈m: nat.  ` shift  n  left  m  places;  n×2^m
     value r: nat:= n ⟦for i: 0;..m ⟦r:= r×2⟧⟧〉〉|).

new shr (|〈n: nat.  〈m: nat.  ` shift  n  right  m  places;  floor (n×2^–m)  or  div n (2^m)
     value r: nat:= n ⟦for i: 0;..m ⟦r:= div r 2⟧⟧〉〉|).

new gcd (|〈a: nat+1.  〈b: nat+1.  ` greatest common divisor of  a  and  b
      a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|).

new norm  ⟦plan num:= nat+1 ⟦plan denom:= nat+1 ` normalize num/denom
         ⟦new g:= gcd num denom.  num:= num/g.  denom:= denom/g⟧⟧⟧.

new count: nat:= 0. ` number of examples
new qlen: nat:= 0. ` total length of quote representations
new rlen: nat:= 0. ` total length of numerator/denominator representations

for length: 1;..15
⟦for string: 0;..(shl 1 length) ` each string of that length
  ⟦for quote: 0;..length ` each quote position (at least one bit to left of quote)
    ⟦if even (shr string (length–1)) ≠ even (shr string (quote–1)) ` roll-normalized
      ⟦if  ` repeat-normalized
            value repeatnorm: bin:= ⊤
            ⟦new len: nat:= div (length–quote) 2. ` the length of the possibly repeating part

http://www.cs.utoronto.ca/~hehner/NR.pdf
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              trythislen ⟦if len>0 ` 1 ≤ len ≤ (length–quote)/2
                                ⟦new extract (|〈i: nat.  〈l: nat.  ` index  i  length  l
                                                         shr string i – shl (shr string (i+l)) l 〉〉|).
                                  new ex:= extract quote len.
                                  if  ` the negative part is a repetition (twice or more) of ex
                                      value b: bin:= ⊤
                                      ⟦new i: nat:= quote+len. ` i+len ≤ length
                                        iloop ⟦new ey:= extract i len. 
                                                   if ex=ey ⟦i:= i+len. ` i≤length
                                                                   if i+len ≤ length ⟦iloop⟧

       else ⟦b:= ⊥⟧⟧
                                                   else ⟦b:= ⊥⟧⟧⟧
                                  ⟦repeatnorm:= ⊥⟧ else ⟦len:= len–1.  trythislen⟧⟧⟧⟧
          ⟦for point: 0;..length+1 ` each point position (right end, interior, left end)
            ⟦if  ` the rightmost bit is 1 or it is to the left of quote or point
                   odd string ∨ (quote=0) ∨ (point=0)
              ⟦ ` convert to numerator/denominator
                 new num: nat:= shl string (length–quote) – string – shl (shr string quote) length.
                 if num<0 ⟦num:= –num⟧. 
                  new denom: nat:= shl (shl 1 (length–quote) – 1) point.
                  norm num denom.
                  ` update statistics
                  count:= count+1.  qlen:= qlen+length.

      rlen:= rlen+1. ` for the sign
      loop ⟦num:= div num 2.  rlen:= rlen+1.

                            if num>0 ⟦loop⟧⟧.
      loop ⟦denom:= div denom 2.  rlen:= rlen+1.

                            if denom>0 ⟦loop⟧⟧⟧⟧⟧⟧⟧⟧⟧.
! “In ”; count; “ examples, quote average length = ”;
    qlen/count; “, num/denom average length = ”; rlen/count.

old shl.  old shr.  old gcd.  old norm.  old count.  old qlen.  old rlen

Minimum Redundancy Codes

new MRC ` a program to compute minimum redundancy prefix codes (Huffman codes)
⟦`input: keys
  `output: screen
  `use: end find nat nil nl point real text

  new forest: *[real; tree (|[text], [tree; tree]|)]:= nil. `The data structure is a string of lists.
   `Each list is a pair of real and tree;  the real is the frequency of the tree.
   `Each tree is binary with texts at the leaves.

   inputstart
   ⟦! “Enter a frequency, then a colon, then a message, then  end , and repeat.  ”;
       “To end, just enter  end .”; nl.
     readloop
     ⟦?!.
       if ↔? = 0 ` Just   end  was pressed.
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       ⟦if ↔forest = 0 `We have not had any input yet. We need at least one.
         ⟦! “Insufficient input.  Try again.”.  inputstart⟧.
         new c:= find “:” (?).
         if c = ↔? ⟦! “Bad format: no colon. Try again.”.  readloop⟧      
         new freq:= ?_(0;..c).
         if freq=–∞ ⟦! “Bad frequency format. Try again.”.  readloop⟧.
         new message:= ?_(c+1;..↔?).
         ` find where the new data goes in forest and put it there.
          new i: nat:= 0.
          findloop ⟦if i = ↔forest  ∨ ( freq ≤ (forest_i)0) ` found where it goes
                          ⟦forest:= forest_(0;..i); [freq; [message]]; forest_(i;..↔forest)⟧
                         else ⟦i:= i+1.  findloop⟧⟧.  readloop⟧⟧⟧.
  
   ` forest  is now a nonempty string of pairs, each pair consisting of a frequency and a tree, each
   ` tree is a single leaf, each leaf is a list-text.  They are in non-decreasing frequency order.
   ` For example:  [3; [“c”]]; [4; [“a”]]; [9; [“f”]]; [12; [“b”]]; [15; [“e”]]; [20; [“d”]]

   new here: nat:= 0.  ` A new tree must be moved to position  here  or later.

   loop ⟦if ↔forest ≥ 2
  ⟦ ` combine the first two trees into a new tree  t
     new t:= [(forest_0)0 + (forest_1)0; [(forest_0)1 ; (forest_1)1]].
      ` remove those first two trees from the forest
     forest:= forest_(2;..↔forest).
      ` put tree  t  into its place in the forest
     innerloop ⟦if here = ↔forest  ∨  (t 0 < (forest_here)0) ` we have found where it goes

⟦forest:= forest_(0;..here); t; forest_(here;..↔forest).  loop⟧
                       else ⟦here:= here+1.  innerloop⟧⟧⟧⟧.

     ` forest  is now a single pair consisting of the total of all frequencies and a code tree.
     new t:= forest_1.  ` the code tree
     ` Walk the tree, depth-first, printing leaves and their codes
     new p: point t:= nil.  ` a path within  t  starting at the root
     new pt: text:= “”.  ` same path as  p  but as a text for printing
     new back ⟦plan p:= *nat ⟦p:= p_(0;..↔p–1)⟧⟧.
     loop ⟦if ~(t p): text ` we are at a leaf

   ⟦! “code: ”; pt; “;  message: ”; ~(t p); nl⟧
   else ⟦p:= p;0.  pt:= pt;“0”.  loop.  back p.  back pt.
            p:= p;1.  pt:= pt;“1”.  loop.  back p.  back pt⟧⟧⟧ `end of MRC 

Read Password

` program to read a password, allowing corrections, displaying blobs
`input: keys
`output: screen
`use: char delete end text
new password: text:= “”.
pswd ⟦!“Please enter password followed by  end : ”.
           read ⟦? nil (:char:) nil.
                     if ?=end ⟦if password=“” ⟦!“Empty password.  Try again.”; nl.  pswd⟧
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                         else ⟦!nl⟧⟧
                     else ⟦if ?=delete ⟦if password≠“” ⟦password:= password_(0;..↔password–1). !delete⟧⟧

                  else ⟦password:= password; ?.  !“•”⟧.
                  read⟧⟧⟧

Grammars

LL(1) Grammar

In this grammar, for each nonterminal, every production except possibly the last begins with a 
different terminal.  Director sets are needed to create the parser, but they are not needed for parsing, 
and that is a special case of LL(1) that deserves its own name;  perhaps LL(1/2).  To parse a program, 
the parse stack begins with only the program nonterminal on it, and ends empty with no more input.  
A name control program is responsible for classifying names.  For efficiency, the productions (except 
possibly the last) for each nonterminal should be placed in order of frequency.  The following 
nonterminals can be eliminated by replacing them with their one production:  program sequent data 
data6 data5 data4 data3 data1.  This leaves the grammar with  33–8 = 25  nonterminals.

program sequent moresequents

moresequents . program
empty

sequent phrase parallelphrases

parallelphrases || sequent
empty

phrase new simplename afternewname
old simplename compounder
⟦ program ⟧
if data ⟦ program ⟧ elsepart
case data ⟦ program ⟧ morecases elsepart
for simplename : data ⟦ program ⟧
plan simplename parameterkind ⟦ program ⟧ arguments
! data
? inputafterq
simplename aftersimplename

afternewname : data := data
(| data |)
:= data
? data ! data
⟦ program ⟧
\ afterbackslash
#1
simplename compounder
empty

afterbackslash simplename afternewname
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\ simplename compounder
empty

compounder \ simplename compounder
empty

elsepart else ⟦ program ⟧
empty

morecases ⟦ program ⟧ morecases
empty

parameterkind : data
:= data
! data
? data
\

aftersimplename ⟦ program ⟧
compounder aftername

aftername := data
! data
? inputafterq
arguments

inputafterq ! echo
data (: data :) data afterpattern

afterpattern ! echo
empty

echo simplename compounder
empty

arguments number arguments
∞ arguments
text arguments
⊤ arguments
⊥ arguments
value simplename : data := data ⟦ program ⟧ arguments
{ data } arguments
[ data ] arguments
( data ) arguments
〈 simplename : data . data 〉 arguments
simplename specificand arguments
empty

data data6 moredata
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moredata ⊨ data ⫤ data
empty

data6 data5 moredata6

moredata6 = data5 moredata6
≠ data5 moredata6
< data5 moredata6
> data5 moredata6
≤ data5 moredata6
≥ data5 moredata6
: data5 moredata6
:: data5 moredata6
∈ data5 moredata6
empty

data5 data4 moredata5

moredata5 , data4 moredata5
,.. data4 moredata5
| data4 moredata5
⊲ data ⊳data4 moredata5
empty

data4 data3 moredata4

moredata4 + data3 moredata4
– data3 moredata4
;; data3 moredata4
; data3 moredata4
;.. data3 moredata4
‘ data3 moredata4
empty

data3 data2 moredata3

moredata3 × data2 moredata3
/ data2 moredata3
∧ data2 moredata3
∨ data2 moredata3
empty

data2 # data2
– data2
~ data2
+ data2
☐ data2
 data2

* data2
¢ data2



ProTem                                           started 1987 May 22                version of 2023 December 14 page 55

$ data2
↔ data2
data1 moredata2

moredata2 * data2 moredata2 
→ data2 moredata2
^ data2 moredata2
^^ data2 moredata2
empty

data1 data0 moredata1

moredata1 % moredata1
? moredata1
?? moredata1
_ data0 moredata1
@ data0 moredata1
& data0 moredata1
arguments

data0 number
∞
text
⊤
⊥
?
??
value simplename : data := data ⟦ program ⟧
{ data }
[ data ]
( data )
〈 simplename : data . data 〉
simplename specificand

specificand (| data |)
compounder

LR(0) Grammar

The following grammar has no reduce-reduce choices and no shift-reduce choices.  It has shift-shift 
choices.  Such a grammar is commonly called LR(0), but it should not be, because a shift action 
pushes an input symbol onto the parse stack, and therefore a shift action depends on the input 
symbol.  It is a special case of LR(1) that deserves its own name, but not LR(0);  perhaps LR(1/2).  
To parse a program, the parse stack begins empty, and ends with only the program nonterminal on it 
and no more input.  A name control program is responsible for classifying names.

program sequent
program . sequent

sequent phrase
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sequent || phrase

phrase new name : data := data
new name := data
new name (| data |)
new name ⟦ program ⟧
new name ? data ! data
new name #1
new name \
new name \ \ name
new name name
new name
old name
name := data
name ! data
! data
name ? data (: data :) data ! name
? data (: data :) data ! name
name ? ! name
name ? data (: data :) data !
? ! name
? data (: data :) data !
name ? !
? !
name ? data (: data :) data
? data (: data :) data
simplename ⟦ program ⟧
if data ⟦ program ⟧
if data ⟦ program ⟧ else ⟦ program ⟧
case data cases
case data cases else ⟦ program ⟧
for simplename : data ⟦ program ⟧
⟦ program ⟧
plan

cases ⟦ program ⟧
cases ⟦ program ⟧

plan plan simplename : data ⟦ program ⟧
plan simplename := data ⟦ program ⟧
plan simplename ? data ⟦ program ⟧
plan simplename ! data ⟦ program ⟧
plan simplename \ ⟦ program ⟧
plan data0
name

data data6 ⊨ data ⫤ data
data6

data6 data6 = data5



ProTem                                           started 1987 May 22                version of 2023 December 14 page 57

data6 ≠ data5
data6 < data5
data6 > data5
data6 ≤ data5
data6 ≥ data5
data6 : data5
data6 :: data5
data6 ∈ data5
data5

data5 data5 , data4
data5 ,.. data4
data5 | data4
data5 ⊲ data ⊳ data4
data4

data4 data4 ; data3
data4 ;.. data3
data4 ;; data3
data4 ‘ data3
data4 + data3
data4 – data3
data3

data3 data3 × data2
data3 / data2
data3 ∧ data2
data3 ∨ data2
data2

data2 + data2
– data2
¢ data2
$ data2
↔ data2
# data2
~ data2
☐ data2
 data2

* data2
data1 * data2
data1 → data2
data1 ^ data2
data1 ^^ data2
data1

data1 data1 data0
data1 _ data0
data1 @ data0
data1 %
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data1 & data0
name ?
name ??
?
??
data0

data0 number
∞
text
⊤
⊥
[ data ]
{ data }
( data )
〈 simplename : data . data 〉
value simplename : data := data ⟦ program ⟧
name
simplename (| data |)

name simplename
name \ simplename
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