
ProTem started 1987 May 22 version of 2019 January 27 page 0

ProTem
Eric Hehner

ProTem is a programming system that serves as both programming language and operating system,
and includes a theorem prover to check each step of program composition. This document is an
informal specification of ProTem. Formal specifications of the data types and program semantics
can be found in the book a Practical Theory of Programming (with minor syntactic differences).

Symbols

ProTem has 13 keywords, plus 4 classes of symbols, plus 61 other symbols. Altogether they are:

if then else fi new old for do od result open close unit
number text name comment
% “ ” « » _ ` : :: := = � < > ≤ ≥ ! ? , ‘ ; . ;.. ,.. | || () { } [] 〈 〉
+ – × / ↑ ↓ → ↔ ∧ ∨ @ + * ~ ¢ $ # ∈ ⊆ ∪ ∩ ☐ ∆ ∇

Some of the ProTem symbols are not found on standard keyboards. Here are the substitutes.
for “ use " for ” reuse " for « use << for » use >>
for � use |= for ≤ use <= for ≥ use >= for ‘ use '
for 〈 use par for 〉 use rap for × use & for ↑ use ^
for ↓ use \ for → use –> for ↔ use < > for ∧ use / \

 for ∨ use \ / for + reuse + for use // for ¢ use size
for ∈ use elt for ⊆ use sub for ∪ use cup for ∩ use cap
for ☐ use [] for ∆ use nand for ∇ use nor for � use < |
for � use | > for “ use ““ or "" for ” use ”” or ""

A number is formed as one or more decimal digits, optionally followed by a decimal point and one
or more decimal digits, optionally followed by % . Here are six examples.

0 275 27.5 0.21 99% 12.3%
A decimal point must have at least one digit on each side of it.

A text begins with a left-double-quote, continues with any number of any characters (but a double-
quote (left or right) within a text must be underlined), and concludes with a right-double-quote.
Here are four examples.

 “” “abc” “don't” “Just say “no”.”

A name is either simple or compound. A simple name is either plain or fancy. A plain simple name
begins with a letter and continues with any number of letters and digits, except that keywords and
symbol substitutes cannot be names. A fancy simple name begins with « , and continues with any
number of any characters except « and » , and ends with » ; within a fancy simple name, blank
spaces are not significant. A compound name is composed of two or more simple names joined with
underscore characters. Here are some examples.

plain simple names: x A1 george refStack
fancy simple names: «William & Mary» « xʹ ≥ x »
compound names: ProTem_grammars_Hehner «2016-9-8»_«grad recruiting»_DCS

A comment begins with a ` that is not in a text or fancy name, and ends at the end of a line.  

http://www.cs.utoronto.ca/~hehner
http://www.cs.utoronto.ca/~hehner/aPToP

ProTem started 1987 May 22 version of 2019 January 27 page �1

Presentation Grammar

There are 29 ways of forming a program, and 56 ways of expressing data. (An LL(1/2) grammar and
an LR(1/2) grammar are at the end of this document.)

A name is one of
simplename: a simple name (plain or fancy)
compoundname: more than one simplename joined with underscores

At each point in a program, a simplename is one of
newname: a simplename that has not previously been defined in the current scope
oldname: a simplename that has previously been defined in the current scope

At each point in a program, a name is one of
indvarname: a name defined as an independent variable
depvarname: a name defined as a dependent variable
constantname: a name defined as a constant
channelname: a name defined as a channel
programname: a name defined as a program or procedure
dictionaryname: a name defined as a dictionary
undefinedname: an undefined name

Here are the ways of expressing data. To the right of each there are examples and explanations and
pronunciations.

number 0 1.2 10%
+ data plus, identity
– data minus, negation, not
data + data plus, addition
data – data minus, subtraction
data × data times, multiplication
data / data by, division
data ↑ data to the power, exponentiation
data ∧ data minimum, conjunction, and
data ∨ data maximum, disjunction, or
data ∆ data negation of minimum, nand
data ∇ data negation of maximum, nor
data = data equals, equation
data � data differs from, discrepancy
data < data less than, strict implication
data > data greater than, strict reverse implication
data ≤ data less than or equal to, implication
data ≥ data greater than or equal to, reverse implication
data , data bunch union
data ,.. data bunch from(including) to(excluding)
data ‘ data bunch intersection
data : data bunch inclusion
¢ data bunch size
{ data } set
~ data content
data ∈ data elements of a set
data ⊆ data subset

ProTem started 1987 May 22 version of 2019 January 27 page �2

data ∪ data set union
data ∩ data set intersection
� data power
$ data set size
text “abc”
data ; data string catenation
data ;.. data string from(including) to(excluding)
data ↓ data string indexing
data � data � data string modification
↔ data string length
data * data definite repetition
* data indefinite repetition
[data] list
data list length
data + data list catenation
data data list index, function application, composition
data @ data pointer indexing
〈 simplename : data → data 〉 function, create constant parameter
data → data function, function space
☐ data domain of a function
data | data selective union
indvarname independent variable name
depvarname dependent variable name
constantname constant name
channelname the most recent data read on the channel
? channelname test for presence of input on the channel
if data then data else data fi conditional data
result simplename : data = data do program od programmed data, create local independent variable
(data) parentheses

Next we have the ways of forming a program.

new newname : data = data create independent variable : type = initial value
new newname = data create dependent variable
new newname := data create constant
new newname do program od create program name but don't execute program
new newname ! ? data create channel with type
new newname open create and open dictionary
new newname unit create constant measuring unit
new newname forward definition
old oldname remove or hide
open dictionaryname open dictionary
close dictionaryname close dictionary
indvarname := data assign independent variable to value
channelname ! data to channel send output
channelname ? data from channel receive input of this type
channelname ? channelname ! input, correct, and echo
newname do program od create program name and execute program
programname execute (call) named program
〈 simplename : data → program 〉 procedure, parameter is constant

ProTem started 1987 May 22 version of 2019 January 27 page �3

〈 simplename :: data → program 〉 procedure, parameter is independent variable
〈 simplename ! data → program 〉 procedure, parameter is output channel
〈 simplename ? data → program 〉 procedure, parameter is input channel
program data procedure, data argument
program indvarname procedure, independent variable argument
program channelname procedure, channel argument
program . program sequential composition
program || program parallel composition
if data then program else program fi conditional program
for simplename := data do program od controlled program, create local constant
do program od parentheses

Here is the precedence of the forms of program.
0. if then else fi do od 〈 〉 programname
1. program argument
2. := ! ?
3. .
4. ||

Program parentheses do od can always be used to group programs differently. The program
a do B od. C. D || E. F

when fully parenthesized, becomes
do do a do B od od. C. D od || do E. F od

Here is the precedence (order of evaluation) of data operators.
0. number text name () [] { } 〈 〉 if then else fi result do od
1. juxtaposition @ left-to-right
2. + – # ~ � ? ☐ * → ↑ ↓ prefix + – # ~ ? ☐ * infix * → ↑ ↓ right-to-left
3. × / ∩ ∧ ∨ ∆ ∇ infix / left-to-right
4. + – + ∪ infix – left-to-right
5. ; ;.. ‘ infix
6. , ,.. | � � infix � � left-to-right
7. = � < > ≤ ≥ : ∈ ⊆ infix continuing

On level 7, the operators are “continuing”. This means, for example, that a=b=c is neither grouped
to the left nor grouped to the right, but means (a=b)∧(b=c) . Similarly a<b=c means
(a<b)∧(b=c) , and so on.

Whenever “data” appears in an alternative for “program”, the most general form of data is intended,
with these exceptions: in a variable or parameter declaration, the type must be on precedence level
0; when a function or program is argumented, the argument must be on precedence level 0.
Therefore p a b means (p a) b . Any data expression becomes precedence level 0 by putting it in
parentheses () .

Only one alternative for “data” contains “program”, and there the most general form of program is
intended.

ProTem started 1987 May 22 version of 2019 January 27 page �4

Data

ProTem's basic data are numbers, characters, and binary values. ProTem's data structures are
bunches, sets, strings, lists, and functions.

Numbers

In addition to the number symbols, there are predefined names of numbers such as pi (an
approximation to the ratio of a circle's circumference to its diameter), e (an approximation to the
base of the natural logarithms), and i (the imaginary unit, or square root of –1). Predefined
names can be redefined in a new scope. In addition to the 1-operand prefix operators + and – , and
the 2-operand infix operators + – × / ↑ , there are predefined function names such as abs, exp, log,
ln, sin, cos, tan, ceil, floor, round, re, im, sqrt, div, and mod (see Predefined Names). Division of
integers, such as 1/2 , may produce a noninteger. Exponentiation is 2-operand infix ↑ ; for
example, 1.2×10↑3 (one point two times ten to the power three). The operator ∧ is minimum
(arms down, does not hold water). The operator ∨ is maximum (arms up, holds water). The
operator ∆ is the negation of minimum. The operator ∇ is the negation of maximum.

In ProTem, numbers are not divided into disjoint types. A natural number is an integer number; an
integer number is a rational number; a rational number is real number; a real number is a complex
number.

Characters

A character is a text of length 1 . We leave it to each implementation to list the characters, and to
state their order. In addition to the character symbols such as “a” (small a) and “ ” (space), there
are six predefined character names: backspace , tab , newline , click , doubleclick , and end (the
end-of-file character). The operators suc and pre give the successor and predecessor respectively.

Binary Values

There are two predefined binary constants: true and false . Negation is – , conjunction is ∧ ,
disjunction is ∨ , nand is ∆ , nor is ∇ .

The infix 2-operand operators = and � apply to all data in ProTem with a binary result; the two
operands may even be of different types. The order operators < > ≤ ≥ apply to real numbers
(including rationals, integers, and naturals), to characters, to binary values, to strings of ordered
items, and to lists of ordered items, with a binary result. In the binary order false is below true , so
≤ is implication. The 3-operand if x then y else z fi has binary operand x , but y and z are of
arbitrary type.

Bunches

There are several predefined bunch names:
null - empty
nat - all natural numbers: 0, 1, 2, ...
int - all integer numbers: ..., –2, –1, 0, 1, 2, ...
rat - all rational numbers: ..., 1/2, ...
real - all real numbers: ..., 2↑(1/2), ...
com - all complex numbers: ..., (–1)↑(1/2), ...

ProTem started 1987 May 22 version of 2019 January 27 page �5

char - all characters: ..., “a”, ...
bin - both binary values: true, false
text - all texts (character strings): ..., “abc”, ...
pic - all pictures
all - all ProTem items

Any number, character, binary value, set, string of elements, and list of elements is an elementary
bunch, or synonymously, an element. For example, the number 2 is an elementary bunch, or
element. Every expression is a bunch expression, though not all are elementary.

Bunch union is denoted by a comma:
A , B “ A union B ”

For example,
2, 3, 5, 7

is a bunch of four integers. There is also the notation
x,..y “ x to y ”

where x and y are integers or characters that satisfy x≤y . Note that x is included and y is
excluded. For example, 0,..10 is a bunch consisting of the first ten natural numbers, and 5,..5 is
the null bunch.

If A and B are bunches, then
A: B “ A is included in B ”

is binary. The size of a bunch is ¢ . For examples, ¢(0, 1, 2) = 3 and ¢null = 0 .

Bunches are equal if and only if they consist of the same elements, without regard to order or
multiplicity.

In ProTem, all operators whose precedence is before that of bunch union, except � , distribute over
bunch union. For examples,

–(3, 5) = –3, –5
(2, 3)+(4, 5) = 6, 7, 8

This makes it easy to express the plural naturals (nat+2), the even naturals (nat×2), the square
naturals (nat↑2), the natural powers of two (2↑nat), and many other things.

Nonempty bunches serve as a type structure in ProTem.

Sets

A set is formed by enclosing a bunch in set braces. For examples, {0, 2, 5} , {0,..100} , {null} ,
{nat} . The inverse of set formation is ~ . For example, ~{0, 1} = 0,1 . The size of a set is $. For
examples, ${0, 1} = 2 and ${null} = 0 . The element, subset, union, and intersection operators ∈
⊆ ∪ ∩ are as usual. The power operator � takes a bunch as operand and produces all sets that
contain only elements of the bunch. For example, � (0, 1) = {null}, {0}, {1}, {0, 1} .

Strings

There is a predefined string name:
nil -the empty string

Any number, character, binary value, list, and function is a one-item string, or synonymously, an
item. For example, the number 2 is a one-item string, or item.

ProTem started 1987 May 22 version of 2019 January 27 page �6

String catenation is denoted by a semi-colon:
S ; T “ S catenate T ”, “ S join T ”

For example,
2; 3; 5; 7

is a string of four integers. There is also the notation
x;..y “ x to y ” (same pronunciation as x,..y)

where x and y are integers or characters that satisfy x≤y . Again, x is included and y is
excluded. For examples, 0;..10 is a string consisting of the first ten natural numbers, and 5;..5 = nil .

The length of a string is obtained by the ↔ operator. For example, ↔(2; 3; 5; 7) = 4 .

A string is indexed by the ↓ operator. Indexing is from 0 . For example, (2; 3; 5; 7)↓2 = 5 . A
string can be indexed by a string. For example, (3; 5; 7; 9)↓(2; 1; 2) = 7;5;7 .

If S is a string and n is an index of S and i is any item, then S � n � i is a string like S except
that item n is i . For example, (3; 5; 9) � 2 � 8 = 3; 5; 8 .

A text is a more convenient notation for a string of characters.
“abc” = “a”; “b”; “c”
“He said “Hi”.” = “H”; “e”; “ ”; “s”; “a”; “i”; “d”; “ ”; ““”; “H”; “i”; “””; “.”
“abcdefghij” ↓ (3;..6) = “def”

Strings are equal if and only if they have the same length, and corresponding items are equal.

We allow a bunch of items to be an item in a string. Since string catenation precedes bunch union on
the precedence table, we have

(3, 4); (5, 6) = 3;5, 3;6, 4;5, 4;6
A string is an element (elementary bunch) if and only if all its items are elements.

If S is a string and n is a natural number, then
n * S “ n copies of S ” or “ n S 's ”

is a string, and
* S “strings of S ” or “any number of S 's”

is a bunch of strings. For examples,
3*5 = 5;5;5
3*(4, 5) = 4;4;4, 4;4;5, 4;5;4, 4;5;5 5;4;4, 5;4;5, 5;5;4, 5;5;5
*5 = nil, 5, 5;5, 5;5;5, 5;5;5;5, ...

The * operator distributes over bunch union, but in its left operand only.
null * 5 = null
(2,3) * 5 = (2*5),(3*5) = 5;5, 5;5;5

Using this semi-distributivity, we have
*a = nat*a

Lists

A list is a packaged string. It can be written as a string enclosed in square brackets. For example,
[0; 1; 2]

The list operators are length, content, indexing, pointer indexing, catenation, composition, selective

ProTem started 1987 May 22 version of 2019 January 27 page �7

union, and comparisons. Let L and M be lists, let n be a natural number, and let p be a string of
natural numbers.

L “length of L ”
~ L “content of L ”
L n “ L at n ”, “ L at index n ”
L @ p “ L at p ”, “ L at pointer p ”
L + M “ L catenate M ”, “ L join M ”
L M “ L composed with M ”
L | M “ L otherwise M ”, “the selective union of L and M ”

plus the comparisons L=M , L � M , L<M , L>M , L≤M , L≥M .
Here are some examples.

#[0; 1; 2] = 3 (the number of items in a list)
~[0; 1; 2] = 0;1;2
[0;..10] 5 = 5 (indexing starts at zero)
[[2; 3]; 4; [5; [6; 7]]] @ (2; 1; 0) = 6
[0;..10] + [10;..20] = [0;..20]
[10;..20] [3; 6; 5] = [13; 16; 15] (in general, (L M)n = L(M n) .)

If a list is indexed with a structure, the result has the same structure. For example,
[10; 20] [2; (3, 4); [5; [6; 7]]] = [12; (13, 14); [15; [16; 17]]]

By using the @ operator, a string acts as a pointer to select an item from within an irregular
structure. If the list L | M is indexed with n , the result is either L n or M n depending on
whether n is in the domain (0,..#L) of L . If it is, the result is L n , otherwise the result is M n .

[10; 11] | [0;..10] = [10; 11; 2;..10]
Lists are equal if and only if they are the same length and corresponding items are equal. They are
ordered lexicographically.

[3; 5; 2] < [3; 6]
The list brackets [] distribute over bunch union. For example,

[0, 1] = [0], [1]
Thus [10*nat] is all lists of length 10 whose items are natural, and [4*[6*real]] is all 4 by 6 arrays
of reals.

Functions

Let p (parameter) be a simple name, let D (domain) be a bunch of items, and let B (body) be an
element (possibly using p as a constant name for an element of D). Then

〈p: D → B〉
is a function with parameter p , domain D , and body B . For example,

〈n: nat → n+1〉 “map n in nat to n+1 ”
is the successor function on the natural numbers.

A function with two parameters is just a function of one parameter whose body is a function of one
parameter. For example, the maximum function is

〈a: real → 〈b: real → if a>b then a else b fi〉〉
Similarly for functions with more than two parameters.

The ☐ operator gives the domain of a function. For example, ☐〈n: nat → n+1〉 = nat .

The notation for applying a function to an argument is the same as that for indexing a list:
juxtaposition. Also, composition and selective union can have function operands, and even a
mixture of list and function operands.

ProTem started 1987 May 22 version of 2019 January 27 page �8

When the body of a function does not use its parameter, there is a syntax that omits the angle
brackets 〈 〉 and unused name. For example,

2→3
abbreviates 〈n: 2 → 3〉 or choose any other parameter name. An example of its use is

1→21 | [10; 11; 12] = [10; 21; 12]

We allow domains to be strings in the following circumstances.
nil→x | f = x
(x;y) → z | f = x→(y→z | f x) | f

Thus, for example,
(0;1) → 6 | [[0; 1; 2];
 [3; 4; 5]] = [[0; 6; 2];
 [3; 4; 5]]

Argumentation comes before bunch union in precedence, and so it distributes over bunch union.
(f, g) (x, y) = f x, f y, g x, g y

Allowing the body of a function to be a bunch generalizes the function to a relation. For example,
nat→bin can be viewed in either of the following two equivalent ways: it is a function (with unused
and therefore omitted parameter) that maps each natural to bin ; it is all functions with domain at
least nat and range at most bin . As an example of the latter view, we have

〈n: nat → mod n 2 = 0〉 : nat→bin

Programmed Data

result simplename : data = data do program od
First, a local independent variable is introduced with a type and initial value; its scope is from do
to od . Then the program is executed. The result is the final value of the newly introduced local
variable. We have not yet presented programs, but the following example, which approximates the
base of the natural logarithms e , should give the idea.

result sum: rat = 1
do new term: rat = 1.

for i:= 1;..15 do term:= term/i. sum:= sum+term od od
There are no side effects. Nonlocal variables become constants within the local scope; their values
may be used, but assignments to them are not permitted. Input and output are not permitted.

Names and Dictionaries

Each name in a dictionary is defined to be one of the following: an independent variable, a
dependent variable, a constant, a program, a channel, or a dictionary. When a name is defined to be
a dictionary, this dictionary also can contain names, some of which can be defined as dictionaries,
and so on. Therefore there is a tree of dictionaries. Whether this tree has a root, and if so what its
name is, are of no consequence. Suppose there is a text named ProTem within a dictionary named
grammars within a dictionary named Hehner within a dictionary named cs within a dictionary
named utoronto within a dictionary named ca . This text can be referred to as
ProTem_grammars_Hehner_cs_utoronto_ca .

A dictionary is either closed or open. We can open a closed dictionary, and close an open dictionary.
By opening dictionaries, we can shorten the names we use. The text referred to by the lengthy

ProTem started 1987 May 22 version of 2019 January 27 page �9

compound name in the previous paragraph can be referred to simply as ProTem if the dictionary
grammars is open. The predefined names include a dictionary named complex , within which there
is a name i . It can always be referred to as i_complex . If we are going to refer to it often, we
might want to shorten this. We do so by saying open complex , and then we can say just i .

Names are defined in a variety of ways, including as new , as function parameters, as procedure
parameters, as for-loop parameters, and as result variables. Whenever a name is defined, its
definition is written in the open dictionary that was opened last (there is always one such dictionary,
even initially, though its name may not be known). A name being defined must not already be
defined in the current scope (see Scope, later). But it may already be in the open dictionary that was
opened last; in that case, the new definition replaces the old definition until the end of the current
scope or until it is removed by old .

Whenever a simple name is used, it is looked up in the open dictionary that was opened last (there is
always one such dictionary, even initially, though its name may not be known); if it is not there, it is
looked up in the open dictionary that was opened next-to-last; and so on. The first definition found
for the name is the one used. If the name is not in any open dictionary, it is unknown (even though it
may be in some closed dictionaries).

Whenever a compound name is used, it is looked up as follows. The last simple name in the
compound name is looked up in the usual way (starting with the open dictionary that was opened
last). Its definition must be as a dictionary. The simple name before the last one in the compound
name is looked up in this one dictionary (whether open or closed). And so on for preceding names in
a compound name.

Names defined by new can be removed from a dictionary with the keyword old (it must already
be there). Names are also removed from a dictionary when execution exits the right scope bracket of
the scope in which they were introduced. Further details and examples will be presented later (see
Scope).

Programs

A fifth of the program constructs are concerned with dictionaries: adding names (new), deleting
names (old), opening a dictionary (open), and closing a dictionary (close). The other four-fifths are
variable assignment, input, output, and a variety of ways of combining programs to form larger
programs. All programs, including those that add or remove names from a dictionary, including
those that open or close a dictionary, are executed in their turn, just like variable assignments and
input and output.

Independent Variable Definition

Here is an example independent variable definition (declaration).
new x: nat = 5

This defines x to be an independent variable assignable to any element in nat , and initially
assigned to 5 . There is no such thing as an “uninitialized variable” nor the “undefined value” in
ProTem. In an independent variable definition, the data after the colon is called the “type” of the
variable. The type can be anything except the empty bunch. The type and initial value can depend
on previously defined names, including variables. For example,

new y: (0,..2×x) = x
defines y as an independent variable whose value can be any natural number from (including) 0 up

ProTem started 1987 May 22 version of 2019 January 27 page �10

to (excluding) twice the value of x at the time this definition is executed, with initial value equal to
the current value of x . Here are three more examples.

new s: [10*int] = [10*0]
new t: text = “”
new u: ((0,..20)*char) = “abc”

In the first example, s is defined as an independent variable that can be assigned to any list of ten
integers, and is initially assigned to the list of ten zeroes. In the middle example, text is a
predefined bunch equal to *char , so t can be assigned to any text, and is initially assigned to the
empty text. In the last example, u is defined as an independent variable that can be assigned to any
text of length less than 20, and is initially assigned to the text “abc” .

Assignment

An independent variable can be reassigned by the assignment notation. Here are two examples using
the definitions of the previous subsection.

x:= 6
s:= 3 → 5 | s

The data on the right must be an element in the type of the variable on the left.

Dependent Variable Definition

If independent variable x is defined as
new x: nat = 5

then
new xplus1 = x+1
new xplus2 = xplus1+1

make xplus1 and xplus2 dependent variables. They depend on variable x , so that xplus1 = x+1
and xplus2 = xplus1+1 are always true. Independent variable x can be assigned various values.
But dependent variables xplus1 and xplus2 cannot be assigned; their values change when the
value of x changes. Expressions x+1 and xplus1+1 are not evaluated in the definition; they are
evaluated each time xplus1 and xplus2 are used. (A clever implementation will evaluate, at
definition time, all parts of the expression that do not depend on variables, and will re-evaluate
xplus1 and xplus2 only when x may have changed value.)

Constant Definition

Here are three constant definitions.
new size:= 10
new piBy2:= pi / 2
new range:= 0,..size

where pi is a predefined constant in dictionary calculus .

A constant may use variables to express its value. For example
new xplus3:= x+3

In the dependent variable definition of xpus1 earlier, x+1 is not evaluated at definition time; it is
evaluated every time xplus1 is used. By contrast, the constant definition xplus3 evaluates x+3
once, at definition time.

When there are no variables used to express the value, there is no semantic difference between
dependent variable definition and constant definition, but there may be an efficiency difference.  

ProTem started 1987 May 22 version of 2019 January 27 page �11

Data Recursion

In an independent variable definition, the type and initial value cannot depend on the variable being
defined. For example,

new no: (0,..2×no) = no
is not allowed due to the occurrences of no to the right of the colon. Likewise a constant definition
cannot be recursive.

Dependent variable definition does allow recursion. The next two examples define fact and div to
be the factorial function and integer divisor function for natural numbers.

new fact = 0 → 1 | 〈n: (nat+1) → n × fact (n–1)〉

new div = 〈 a: nat → 〈d: (nat+1) →
if a<d then 0 else if even a then 2 × div (a/2) d else 1 + div (a–d) d fi fi〉〉

Here is a function that eats arguments until it is fed argument 0 .
new eat = 〈a: nat → if a=0 then 0 else eat fi〉

So eat 5 2 0 = 0 and eat 4 7 3 8 0 = 0 .

The next example is a pure, baseless recursion.
new rec = rec

Whenever rec is used, the computation will be nonterminating.

A final example defines all binary trees with integer nodes.
new tree = [nil], [tree; int; tree]

Program Definition

Program definition gives a program a name, but does not execute the program. For example,
new switchends do s:= 0 → s 9 | 9 → s 0 | s od

Execution of this definition creates the program name switchends , but does not execute program
switchends . After execution of this definition, the name switchends can be used to cause execution
of the program it names. Program definitions can be recursive.

The names used in a program definition, in the previous example s , are those visible at the time the
definition is executed, that is, at the time this definition adds the name switchends to the dictionary.
At the time switchends is called, causing execution of the assignment of s , variable s may not be
visible, but it is assigned nonetheless.

Predefined program names include asm , await , exec , ok , stop , wait .

Measuring Unit Definition

There are three predefined units of measurement. They are g , representing mass in grams, m ,
representing distance in meters, and s , representing time in seconds. A unit of measurement has all
the properties of an unknown positive real number constant. So, for example, we write 10×m/s for
the speed 10 meters per second. And we can define

new km:= 1000×m
to make km be a kilometer, and

new h:= 3600×s

ProTem started 1987 May 22 version of 2019 January 27 page �12

to make h be an hour. So 1×m/s = 3.6×km/h evaluates to true . To assign a variable to a quantity
with units attached, the variable's type must have compatible units attached. For example,

new speed: (real×m/s) = 3.6×km/h
assigns speed to 1×m/s . For another example,

new sheet unit. new quire:= 25×sheet. new ream:= 20×quire.
new order: (nat×sheet) = 3×ream

assigns order to 1500×sheet . When the value 5×m/s is converted to text by realtext , the result is
“5 m/s” without the × sign and without evaluating the unknown real values m and s .

Forward Definition

A forward definition, for example
new abc

is a notice that a definition will follow later. It is used, for example, when definitions are mutually
recursive. (See Scope.)

Name Removal

Names added to a dictionary with the keyword new can be removed from the dictionary with the
keyword old . Even though a name may be removed from a dictionary, its definition will remain as
long as there is an indirect way to refer to it. For example,

new s: [*all] = [nil].
new push do 〈x: all → s:= s + [x]〉 od.
new pop do s:= s [0;..#s–1] od.
new top = s (#s–1).
new empty = s=[nil].
old s.

The names push , pop , top , and empty are now defined for everyone's use. The name s was
defined for the purpose of defining the other names, and then removed from the dictionary, leaving
the other names dependent upon an anonymous variable.

Dictionaries

The syntax
new d open

is used to create a new dictionary, entering its name d in the open dictionary that was opened last,
and then opening d . The syntax

open d
is used to open an existing but closed dictionary d . The syntax

close d
is used to close an existing open dictionary.

The predefined names include a dictionary named randomnat , within which there are three names:
init , next , and value . It might have been defined as:

ProTem started 1987 May 22 version of 2019 January 27 page �13

new randomnat open.
new big:= 2↑31.
new rv: (0,..big) = 123456789.
new init do 〈seed: (0,..big) → rv:= seed〉 od.
new next do rv:= mod (rv × 5↑13) big od.
new value = 〈from: nat → 〈to: nat → floor (from + (to–from)×rv/big)〉〉.
old big. old rv.

close randomnat.
Variable rv is now hidden; its name is removed from the dictionary, but init , next , and value
still use it. We can use the definitions in this dictionary in the following way:

init_randomnat 555555555.
next_randomnat.
screen! nattext (value_randomnat 0 10).

Or, if we are going to use them often, we may want to shorten what we say as follows:
open randomnat.
init 555555555.
next.
screen! nattext (value 0 10).

We can get rid of a dictionary name d by saying
old d

Removing a dictionary name by old also removes all names in that dictionary. The dictionary
remains in existence, closed and anonymous, as long as something refers to it or to its contents.

Sequential Composition

Sequential composition is denoted by a period. It is an infix connective.

Parallel Composition

For programs P, Q, ..., R that each assign different variables, or different parts of a structured
variable, their parallel composition is denoted P||Q||...||R . Each program can use the independent
variables assigned by the others, but all occurrences of independent variables assigned by the other
programs refer to their initial value. Similarly a dependent variable that depends on variables
assigned in one program can be used in parallel programs, but its value will be determined by the
initial values of the variables it depends on. Parallel programs cannot affect each other through
assignments of variables. For co-operation, programs can communicate with each other on channels
defined for the purpose.

Here is a program to find the maximum value in nonempty list L in log (#L) time. (L is an
independent variable, and its value is destroyed in the process.) We define findmax i j to find the
maximum in the segment of L from index i to index j .

new findmax do 〈i: (0,..#L) → 〈j: (1,..#L+1) →
 if j–i=1 then ok
 else do findmax i (div (i+j) 2) || findmax (div (i+j) 2) j od.

L:= i → (L i ∨ (L (div (i+j) 2) | L fi〉〉
After execution of findmax 0 (#L) , the maximum value in the original list is L 0 .

ProTem started 1987 May 22 version of 2019 January 27 page �14

Output and Input

Each channel is defined to transmit a specific type of value. The output channels screen and
printer , and the input channel keys , are predefined to transmit text.

Channel screen accepts text, which is displayed on the screen. The program
screen! “Hi there.”

sends the text “Hi there.” to the screen. A string of outputs can be sent together
screen! “Answer = ”; realtext x; newline

where realtext converts from a real number to a text.

The keyboard is a program that runs in parallel with other programs; you don't need to initiate it; it
is already running. It monitors what key combinations are pressed, and for what duration, and
creates a string of characters. So the shift-A combination and the control-Q combination are
characters. The click button is just a key like any other; click and doubleclick are characters.

Text from the keyboard (including the click button) can be received from channel keys . Five
characters of input are received from channel keys by saying

keys? 5*char
If input is not yet available, it is awaited. The backspace and newline characters may be part of
the input; no corrections are made. The input is not echoed on the screen. The program

keys? text; newline
reads text up to and including a newline character. To receive spaces followed by digits, possibly
including a decimal point, define

new digits:= “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”
and then write

keys? *“ ”; *(digits, “.”)
The longest matching string of digits and decimal points will be read.

When input is received, it is referred to by the channel name. After the previous example input, we
might have the assignment

x:= textreal keys
where textreal converts from a text to a real number.

There is a second form of input that replaces the type with the name of a channel that outputs text.
keys? screen !

reads text from channel keys , corrected according to backspace characters, up to the next newline
character, and echoes the input on the screen. The newline character is consumed and echoed, but
not included in the value of keys .

If c is the name of an input channel, then the input test
? c

is a binary expression saying whether there is currently any unread input on channel c .

Channel Definition

The definition
new c!? nat

defines c to be a new local channel that transmits naturals. It can be used for output and input. For
example,

ProTem started 1987 May 22 version of 2019 January 27 page �15

new c!? nat. do c! 7 || c? 0,..100. x:= c od. old c
assigns x to 7 . Only one of the programs that are in parallel with each other can use a channel for
output. More than one of the programs that are in parallel with each other can use the same channel
for input only if the parallel composition is not sequentially followed by a program that uses that
channel for input. When parallel programs read from the same channel, they read the same inputs
independently.

Conditional Program

The if then else fi is as usual. There is no one-tailed if in ProTem, but there is a predefined
program ok whose execution does nothing. For example,

if x>y then x:= y else ok fi
With a one-tailed if, it is too easily forgotten that there are two cases to consider. An “assert”
program is obtained according to the following example.

if x>y then ok else screen! “appropriate error message”. stop fi

Named Programs

A named program has the syntax
newname do program od

The name is attached to the program (like a program definition), and the program is executed (unlike
a program definition). The program name is known only within the program to which it is attached;
after that, it is again new and can be reused. One purpose of this naming is to make loops. Here is a
two-dimensional search for x in an n×m array A of integers (that is, A: [n*[m*int]]).

new i: nat = 0.
tryThisI do if i=n then screen! inttext x; “ does not occur.”

else new j: nat = 0.
tryThisJ do if j=m then i:= i+1. tryThisI

else if A i j = x
then screen! inttext x; “ occurs at ”; nattext i; “ ”; nattext j
else j:= j+1. tryThisJ fi fi od fi od

The next example is a fast remainder program, assigning natural variable r to the remainder when
natural a is divided by natural d , using only addition and subtraction.

r:= a.
outerloop do if r<d then ok

else new dd: nat = d.
innerloop do r:= r–dd. dd:= dd+dd.

if r<dd then outerloop else innerloop fi od fi od
The use of a program name is semantically a call; it means the same as replacing it with the program
it names. This example means the same as

ProTem started 1987 May 22 version of 2019 January 27 page �16

r:= a.
outerloop
 do if r<d then ok

else new dd: nat = d.
innerloop
 do r:= r–dd. dd:= dd+dd.

if r<dd
then if r<d then ok

else new dd: nat = d.
innerloop
 do r:= r–dd. dd:= dd+dd.

if r<dd then outerloop else innerloop fi od fi
else r:= r–dd. dd:= dd+dd.

if r<dd then outerloop else innerloop fi fi od fi od
The calls outerloop and innerloop were replaced by the programs they name. They reappear, and
again they mean the programs they name. Although semantically they are calls, in this example they
are tail recursions, so they are implemented as branches (jumps, go to's).

The next example illustrates that named programs provide general recursion, not just tail recursion.
It computes x:= fn and y:= fn+1 , where f0 , f1 , f2 , ... are the Fibonacci numbers, in log n time.

Fib do if n = 0 then x:= 0. y:= 1
else if odd n then n:= (n–1)/2. Fib. n:= x. x:= x↑2 + y↑2. y:= 2×n×y + y↑2

else n:= n/2 – 1. Fib. n:= x. x:= 2×x×y + y↑2. y:= n↑2 + y↑2 + x fi fi od

A fancy name can be used as a specification. For example,
« xʹ > x » do x:= x+1 od

The specification on the left « xʹ > x » is implemented (refined, implied) by the program on the right
x:= x+1 . If the specification is written within the language that the prover understands, the prover
attempts to prove that the specification is implemented (refined, implied) by the program. If the
program makes use of a specification, the inner specification is used in the outer proof. For example,

« xʹ = 0 » do if x=0 then ok else x:= x–1. « xʹ = 0 » fi od
In the else-part, the specification « xʹ = 0 » means exactly what it says, rather than the program that
it names. Thus the use of specifications makes complicated fixed-point semantics unnecessary.

If the prover fails to understand the specification, or fails to prove the refinement, it informs the
programmer, and treats the specification as just a name.

The following three lines are equivalent to each other.
P do Q od
new P do Q od. P. old P
do new P do Q od. P od

Controlled Program

This example computes the transitive closure of A: [n*[n*bin]] .
for j:= 0;..n

 do for i:= 0;..n
 do for k:= 0;..n

 do A:= (i;k) → (A i k ∨ (A i j ∧ A j k)) | A od od od
The assignment can be restated as

ProTem started 1987 May 22 version of 2019 January 27 page �17

if A i j ∧ A j k then A:= (i;k) → true | A else ok fi
if you prefer. The name being introduced by for is known only within the loop body, and it is known
there as a constant. It is not a variable, and so it is not assignable. We call it a for parameter. In the
example, each parameter takes values 0, 1, 2, and so on up to and including n–1 , but not including
n .

For a second example, here is the sieve of Eratosthenes.
new n:= 1000.
new prime: [n*bin] = [2*false; (n–2)*true].
for i:= 2;..ceil (sqrt n)
do if prime i then for j:= i;..ceil (n/i) do prime:= (i×j) → false | prime od else ok fi od

A for parameter is “by initial value”, so
for i:= x; x do x:= i+1 od

increases x by 1 , not 2 .

After the := we can have any string expression; the parameter stands for each item in the string, in
sequence. We can also have any bunch expression; the parameter stands for each element of the
bunch, in parallel. As an example,

for i:= 0,..#A do A:= i → 0 | A od
makes the items of A be 0 , in parallel.

We can also have a bunch of strings, or a string of bunches, and so on, so that sequential and parallel
execution can be nested within each other. (Note: we do not apply distribution or factoring laws;
the structure of the expression is the structure of execution.)

Procedures

A program can have a constant parameter, as in this example.
〈y: real → x:= x×y〉

A program with one or more parameters is called a “procedure”. A procedure of n+1 parameters is
a procedure of 1 parameter whose body is a procedure of n parameters. A procedure can be
argumented in the same way that lists are indexed and functions are argumented. For example,

〈y: real → x:= x×y〉 3
which is the same as

x:= x×3
A procedure's constant parameter is known only within the procedure body. It is not a variable, and
so it is not assignable. It is “by initial value”, so

〈i: int → x:= i. y:= i〉 (x+1)
gives both x and y a final value one greater than x 's initial value.

A program can also have an independent variable parameter, as in this example.
〈x:: int → x:= 3〉

A procedure with an independent variable parameter cannot be applied to a variable appearing in the
procedure. This example procedure can be applied to any independent variable, even one named x ,
because the nonlocal name x does not (and cannot) appear in the procedure. The procedure

〈x:: int → x:= 3. y:= 4〉
cannot be applied to variable y . The main use for independent variable parameters is probably to
affect many files in the same way; for example, a procedure to sort files.

ProTem started 1987 May 22 version of 2019 January 27 page �18

A program can also have a channel parameter, as in this example.
〈c! text → c! “abc”〉

can be applied to any channel that receives text. A procedure with a channel parameter cannot be
applied to a channel appearing in the procedure. This example procedure can be applied to any
output channel, even one named c , because the nonlocal channel name c does not (and cannot)
appear in the procedure. Likewise,

〈c? text → c?. screen! c〉
can be applied to any input channel that delivers text. But

〈c! text → c! “abc”. d! “def”〉
cannot be applied to channel d .

The following procedure pps has three channel parameters. On the first, a , it reads the coefficients
of a rational power series; on the second, b , it reads the coefficients of another rational power
series; on the last, c , it writes the coefficients of the product power series.

new pps do 〈a? rat → 〈b? rat → 〈c! rat →
 do a? rat || b? rat od. c! a×b.

 new a0:= a. new b0:= b. new d!? rat. 
 do pps a b d

 || do a? rat || b? rat od. c! a0×b+a×b0.
 loop do do a? rat || b? rat || d? rat od.

 c! a0×b+d+a×b0. loop od od〉〉〉 od

Format

Although it is not part of the ProTem language, here are the formatting rules that I prefer. The
choice of alternative depends on the length of component data and programs.

A. B for x:= A do B od
or or

A. for x:= A
B do B od

------------------------------------ ------------------------------------
A || B A + B

or or
 A A
|| B + B

------------------------------------ ------------------------------------
if A then B else C fi result x: A = B do C od

or or
if A then B result x: A = B
else C fi do C od

or ------------------------------------
if A 〈x: A → 〈y: B → C〉〉
then B or
else C fi 〈x: A → 〈y: B →

 C〉〉

ProTem started 1987 May 22 version of 2019 January 27 page �19

Scope

Scopes are limited by do od , then else , else fi , and 〈 〉 brackets. Each of these four pairs is a
scope opener and a scope closer. Scopes are also limited by parallel composition; || is both a scope
closer and a scope opener.

A name introduced by the keyword new must be new, i.e. not defined since the previous unclosed
scope opener. Its scope extends from its definition, through all following sequentially composed
programs, to the corresponding scope closer. But it may be covered by a definition in a more local
scope. For example, letting A, B, C, ... stand for arbitrary program forms (but not new or old), in

A. new x: int = 0. B. do C. new x: bin = true. D od. E
the definition of x as an integer variable is not yet in effect in A , but it is in effect in B , C , and
E . The definition that makes x a binary variable is in effect in D . None of A , B , C , D , or E
can contain a redefinition of x unless it is within further do od , then else , else fi , or 〈 〉 brackets.

A name introduced by new can be removed from the dictionary by using old , ending its scope
early. So in

new x:= 0. A. old x. B
the definition of x is in effect in A but not in B . Within B , the name x has the same meaning (if
any) that it had before the previous unclosed scope opener. After old x , the name x is again new
and available for definition. However,

new x:= 0. do old x. A od
is not allowed; a scope cannot be ended by old within a subscope.

If a name is introduced by new outside all scope limiters, its scope ends only with old . Its scope
does not end with the end of a computing session, not even by switching off the power. Variables
declared outside all scope limiters serve as “files”. A predefined name cannot have its scope ended
by old , but it can be obscured by a programmer's redefinition of the same name.

In an independent variable definition, a constant definition, a channel definition, a for parameter
definition, a function parameter definition, a procedure parameter definition, and a result variable
definition, the name being introduced cannot be used in the type or initial value; its scope begins
after the type and initial value.

In a dependent variable or program definition, the scope of the name being introduced starts
immediately. This allows the definitions to be recursive. A forward definition allows mutual
recursion by starting the scope of a dependent variable name or program name even before its
definition. For example, in

new f:= 3. do new f. new g = ···f···g···. new f = ···f···g···. B od
f and g are each defined in terms of both of them. Without the forward definition of f (following
do), g would be defined in terms of the earlier constant definition new f:= 3 .

A program can be given a name without the keyword new . Any such name must be new within the
most local scope, just like a name introduced with the keyword new . Its scope extends only
through the program to which it is attached, not beyond. After that, it is again new and available for
definition.

A name can be introduced as a procedure parameter or function parameter or for parameter or
result variable. Any such name is automatically considered to be new. Its scope extends only
through the program or data to which it is attached, not beyond.

ProTem started 1987 May 22 version of 2019 January 27 page �20

The opening and closing of dictionaries obey the same scope rules. In a program of the form
A. do B od. C

all names in all dictionaries, and which dictionaries are open, and the order in which they were
opened, are the same at the start of C as they were at the end of A , regardless of any local changes
within B . However,

open d. do close d od
is not allowed; a dictionary cannot be closed in a subscope of the one in which it was opened.

To execute a program stored on someone else's computer, just invoke that remote program using its
full address (programname_computername). For efficiency, it might be best to compile that remote
program for your own computer and run it locally. Any nonlocal names (variables, channels, ...)
refer to entities on the computer where the program is compiled.

Miscellaneous

As a character within a text, the left- and right-double-quote characters must be underlined. For
example, “Just say “no”.” . As a character within a text, an underlined left- and right-double-quote
character must be underlined again. And so on. Thus every program can be presented to a compiler
as a text. But we cannot write a self-reproducing expression with this convention. For that purpose,
we would need to represent left- and right-double-quote characters within a text by repeating them.
For example, “Just say ““no””.” .

The ProTem equivalent of enumerated type is shown here.
new color:= “red”, “green”, “blue”.
new brush: color = “red”

The ProTem equivalent of the record type (structure type) is as follows.
new person:= “name” → text | “age” → nat.
new p: person = “name” → “Josh” | “age” → 16

The fields of p can be selected in the usual way, for example
screen! p “name”

prints the text “Josh”. The value of p can be changed in the usual ways, such as
p:= “age” → 17 | p.
p:= “name” → “Amanda” | “age” → 2

We can even have a whole file (string) of records
new file: (*person) = nil

and catenate new records onto its end.
file:= file; p

The efficiency of pointers is obtained through the use of predefined name index .
new index:= text→*nat

When applied to a text argument, it yields the result *nat . The use of index is a signal to the
implementation that the natural numbers will be used only as indexes into the structure whose name
is given by the text argument (and the implementation will check that this is so). For example, we
can define a linked list G as follows.

new G: [*(“name” → text | “next” → index “G”)] = [“name” → “zzzzz” | “next” → 0].
new first: index “G” = 0.

We can use first in an arithmetic context, for example
first:= first+1

ProTem started 1987 May 22 version of 2019 January 27 page �21

and similarly for the “next” field of each record of G . But we can ultimately use them only as
indexes into G , for example

first:= G@first “next”
G:= first → (“name” → “Aaron” | “next” → first) | G

With this limited use, the implementation of these indexes can be memory addresses. This way we
obtain all the performance benefits of pointers without destroying the logic of our language.

The previous example, with linked list G , does not show the full generality of index . Here is a
tree-structured example.

new tree = [nil], [tree; all; tree].
new t: tree = [nil].
new p: (index “t”) = nil

To move p down to the left in the tree we reassign it this way:
p:= p; 0

and similarly to move it down to the right. Thus p is a string of indexes indicating a subtree t@p
of t . We can replace this subtree with tree s using the assignment

t:= p → s | t
We can express the information at the node indicated by p as

t@p 1 or t@(p; 1)
and we can replace the information at this node with the integer 6 using the assignment

t:= (p;1) → 6 | t
To move up in the tree, we just remove the final item of p , and to make that easy, we define

new backup = 〈p: (*nat) → p↓(0;..↔p–1)〉
Now

p:= backup p
moves p up to its parent.

The procedure of some other programming languages is a combination of naming and
parameterization. For example,

new transformX do 〈magnification: real → 〈translation: real →
 x:= magnification×x + translation〉〉 od

Here is a procedure with one parameter
new translateX do transformX 1 od

formed by providing one argument to a two-parameter procedure. To provide an argument for just
the second parameter is a little more awkward, but not too bad.

new magnifyX do 〈magnification: real → transformX magnification 0〉 od
We can now obtain a three-times magnification of x in either of these ways.

magnifyX 3
transformX 3 0

In some other programming languages, the “function” is a combination of naming, parameterizing,
and programmed data. For example,

new fact = 〈n: nat → result f: nat = 1do for i:= 0;..n do f:= f×(i+1) od od〉

Exception handling is provided by bunch union or by the | operator. For example,
new divide = 〈dividend: com → 〈divisor: com →

 if divisor = 0 then “zero divide” else dividend / divisor fi 〉〉
We can state the type of result returned by this function as

com, “zero divide”
The implementation will provide the tag to discriminate between the two.

ProTem started 1987 May 22 version of 2019 January 27 page �22

The selective union operator applies its left side to an argument if that argument is in the stated
domain of its left side; otherwise it applies its right side. Let us define

new weekday = 〈d: (0,..7) → 1≤d≤5〉
Then in the expression

(weekday | all→“domain error”) i
if i fails to be an integer in the range 0,..7 , the left side “catches” the exception and “throws” it to
the right side, where it is “handled”.

The effect of an input choice connective can be obtained as follows.
inputchoice do if ?c then c? formnum. P

else if ?d then d? formnum. Q
 else inputchoice fi fi od

The effect of Unix pipes is obtained by channel parameters. For example, suppose trim is a
procedure to trim off leading and following blanks and tabs and newlines from text, and sort is a
procedure to sort texts. (Please excuse the informal body since it's not the point of the example.)

new trim do 〈in? text → 〈out! text → repeatedly read from in , trim off leading and trailing
 space, output to out , until “***” is read.
 The final “***” is output 〉〉 od.

new sort do 〈in? text → 〈out! text → repeatedly read from in until “***” is read and output
 the sorted texts to out . The final “***” is output 〉〉 od

We can feed the output from trim to the input of sort by defining a channel for the purpose. If the
original input comes from keys , and the final output goes to screen , then

new pipe!? text. trim keys pipe. sort pipe screen. old pipe
Even better:

new pipe!? text. do trim keys pipe || sort pipe screen od. old pipe
If sort needs input before it is available from trim , sort waits.

The effect of modules is partly obtained by old and partly by dictionaries. There is no direct
counterpart to the import construct or frame construct. It is recommended to place a comment at the
head of each major program component saying which nonlocal names are used, and in what way
they are used. It is possible for an implementation to generate such comments on request. It is also
possible for programmers to make such comments in an agreed format so that an implementation can
recognize them and check them. Here is a suggested standard.

`input: on these channels
`output: on these channels
`need: the values of these variables and constants and units
`assign: these variables
`call: these program names
`refer: to these dictionaries

They are transitive through “need” and “call” without requiring the implementation to do a transitive
closure (it just checks the comments at the head of the needed constants and called program names).

The predefined procedure asm has one text parameter. If the argument represents an assembly-
language program, the execution is that of the represented assembly-language program. An
implementation may provide procedures for a variety of languages; for example, it may provide a
procedure named Python , with one text parameter, whose execution is that of the Python fragment
represented by the argument.

ProTem started 1987 May 22 version of 2019 January 27 page �23

Object Orientation

ProTem considers object orientation to be a programming style, rather than a programming-language
style, or collection of language features. Object-oriented programming (as a style of programming)
can be done in ProTem, and should be done whenever it is helpful. Data structures, and the
functions and procedures that access and update them, can be defined together in one dictionary. If
many objects of the same type are wanted, the type can be defined and used many times. Or, if you
prefer, objects can be instantiated by re-invoking the program that defines one of them.

Documents

The predefined name pic is all picture values. It can be used, for example, to create a picture-
valued variable.

new p: pic = [x*[y*0]].
The name pic is defined as [x*[y*(0,..z)]] where x is the number of screen pixels in the horizontal
direction, y is the number of pixels in the vertical direction, and z is the number of pixel values. A
picture can therefore be expressed in the same way as any other two-dimensional array, and one can
refer to the pixel in column 3 and row 4 of picture p as p 3 4 .

Another predefined name is movie , defined as [*pic] . The operations on movies are just those of
lists, such as catenation. To help in the creation of movies, one of the pixel values should be
“transparent”, and one of the operations on pictures should be overlaying one picture on another.

Editing

The command control-e (hold down the control key and type an e) invokes an editor for creating or
modifying any definition (independent variable, dependent variable, constant, program name,
channel, or dictionary name). When a program name is defined, the defined program is not
immediately compiled; it is compiled when it is first invoked. When its definition is modified, the
old executable form is thrown away; the new definition is not compiled until it is invoked. It may
also be necessary to throw away the executable form of all programs that depend directly on the
redefined name.

Security

Any dictionary may contain a data definition of the name password , such as
new password:= encode “Smith” ` my mother's maiden name

where encode is a not-easily-invertible function from texts to texts. If a dictionary contains the
constant password, the text will be requested when an attempt is made to open the dictionary or to
refer to its contents. Passwords belong to dictionaries, not to people. For example

new readBarrier open.
new password:= encode “elephant”. ` code for reading
new writeBarrier open.

new password:= encode “giraffe”. ` code for writing
new it: real = 17.2.
close writeBarrier.

new readonlyit = it_writeBarrier.
close readBarrier.

To use readonlyit , either by opening dictionary readBarrier or as readonlyit_readBarrier , you
must know the password “elephant”. This enables you to know the value of variable it , but not to

ProTem started 1987 May 22 version of 2019 January 27 page �24

change it. To change it, you must know a second password, “giraffe”.

Session

When the computer is turned on, a session begins. When control-q is typed, a session ends and a
new one begins. When a number of idle minutes pass (the number is a parameter of the system and
may be set to infinity), a session ends and a new one begins. When the computer is turned off, a
session ends.

At the start of a session, the screen is clear, only the root dictionary is open, and all passwords are
required. A password will not be requested twice within the same session for the same dictionary.

Sessions do not define the lifetime of definitions (variables, data, programs, dictionaries). A
definition that is outside all do od , then else , else fi , and 〈 〉 pairs lasts from the execution of the
definition (new) to the execution of the corresponding name removal (old). This may be less than
a session, or more than a session. Turning off the computer should not cut the power instantly, but
should first cause any nonlocal variables whose values are stored in volatile memory, and whose
values outlast a session, to be saved in permanent memory.

Sessions are defined for each user of a multiuser computer, and are for security and error recovery.

Error Recovery

It is essential to be able to abort the execution of a program, especially if you suspect that its
execution will take forever. To do so, type control-u (for “undo”). The undo command not only
aborts execution, but also returns to the state (except for input and output) prior to the start of
execution of the aborted program. The undo command can even be issued after the completion of
execution of a program, before the start of the next one. In that case it acts as the magical inverse of
the previous program.

On many computers, undo can be implemented just by doing nothing; nonvolatile memory contains
the state as it was before the start of the previous program, and volatile memory contains the current
state, which is stored in nonvolatile memory at the start of execution of the next program. (When the
execution of a program runs over five minutes, or causes a massive state change, the current state
may be saved temporarily in nonvolatile memory, to become permanent when the possibility of
undoing it has passed.)

A second level of error recovery, control-s, undoes a session. Implementing it requires capturing the
state at the start of a session. Although this is expensive, it is hoped that it can serve also as system
backup, performed automatically and incrementally with a frequency that matches file use.

The final kind of error recovery works in conjunction with session undo. It requires ProTem to keep
a text file named session consisting of all keystrokes since the start of the session. (This is quite
practical: an hour's hard work produces only 10kbytes of keystrokes.) One first performs a session
undo; this resets the state except for the keystroke file. One then makes a copy of the keystroke file
to capture it at some instant (it is always growing).

new copy: text = session
One then edits the copy, perhaps using the text editor, and then executes the result.

exec copy
This gives us perfectly flexible error recovery for the modest cost of a keystroke file.

ProTem started 1987 May 22 version of 2019 January 27 page �25

Command Summary

There are four “commands” in ProTem that are not presented in the grammar. They cannot be part
of a stored program. They can be used only by a human at a keyboard. They are:

control-e: enter editor
control-q: quit session
control-u: undo program
control-s undo session

Possibly Needed, But Not Yet Designed Features

We need to be able to easily express the creation, deletion, placement, movement, resizing, and
scrolling of a window, and to replace any region within a window. The entire screen, sometimes
called the “desktop”, is just a window that cannot be created (it is already created), deleted, moved,
resized, or scrolled. Perhaps we also need better ways of defining touchpad or touchscreen gestures.
The variable cursor: nat; nat tells the current cursor position.

We need a sound (noise) data type. We also need a way to combine all of these types in one
document. We also need to be able to define regions of documents to be clickable links.

Intentionally Omitted Features

Each of the following suggestions is a syntactic convenience, and it's no trouble to add to the
language. But they make the language larger, and that's a cost. And they move away from the form
needed for verification. So they are not included in ProTem.

one-tailed if
if x>0 then y:= 5 fi abbreviates if x>0 then y:= 5 else ok fi

assertion
assert x>y abbreviates if x>y then ok else screen! “assert failure”. stop fi

list item assignment
A 3:= 5 abbreviates A:= 3→5 | A
A 3 4:= 5 abbreviates A:= (3;4)→5 | A

definition grouping
new x, y: int = 0 abbreviates new x: int = 0. new y: int = 0
old x, y abbreviates old x. old y
open this, that abbreviates open this. open that
〈a, b: nat → a+b〉 abbreviates 〈a: nat → 〈b: nat → a+b〉〉
〈a, b: nat → x:= a+b〉 abbreviates 〈a: nat → 〈b: nat → x:= a+b〉〉

looping constructs
while n>0 loop n:= n–1 pool abbreviates

loop do if n>0 then n:= n–1. loop else ok fi od
loop n:= n–1 until n=0 pool abbreviates

loop do n:= n–1. if n=0 then ok else loop fi od
loop P. exit when n=0. Q pool abbreviates

loop do P. if n=0 then ok else Q. loop fi od

ProTem started 1987 May 22 version of 2019 January 27 page �26

Implementation Philosophy

Ideally, an implementation checks whether the text presented to it is a program, and issues an error
message if it is not. That check should include determining whether every independent variable
assignment is to a value that is included in the type of the variable. That determination is most
helpful if it can be made before execution, but if not, it is still helpful if it can be made during an
execution attempt.

While not an error, there are also expressions that cannot be evaluated further. That presents an
implementation problem, but not a semantic problem. For example,

screen! inttext (–3) prints –3
We cannot evaluate the application of the minus operator to the number 3 , so the implementation
prints the operator and operand. Similarly

screen! rattext (1/0) should print 1/0
screen! nattext ([0; 1] 2) should print [0; 1] 2
screen! nattext (〈r: rat → 5〉 (1/0)) should print 5
screen! bintext (1/0 = 1/0) should print true
screen! bintext ([0; 1] 2 = [0; 1] 2) should print true

No general-purpose programming language has ever been, or will ever be, implemented entirely.
Every such language is infinite; every implementation is finite. There is always a program too big
for the implementation. There is a multitude of size limitations: the parse stack might overflow, the
dictionary (symbol table) might be too small, the forward branch fixup list might be exceeded, and
so on. It would be ugly to define a programming language by listing all the size limitations of
programs. And it would be counter-productive because it would exclude implementations that can
accommodate larger programs.

Whenever a program exceeds a size limitation, the implementation should not say “Error: limitation
exceeded.”, because the program is not in error. The implementation should say “Sorry: this
implementation is too limited to accommodate your program.”. An “error” message tells a
programmer to correct the error; there is no other option. A “sorry” message gives the programmer
3 options: change the program to live within the limitation; change the implementation options to
increase the limit that was exceeded; take the program to a different implementation.

Natural numbers and integers are usually limited to those that are representable in a specific number
of bits, for example, 32 bits. This is a size limitation, just the same as other size limitations. It is
uglier to define arithmetic within finite limitations than to define the naturals and the integers. And it
is counter-productive to do so, because it excludes an implementation with 64-bit arithmetic. As
with other implementation limitations, numeric overflow should not get an “error” message; it
should get a “sorry” message.

Floating-point numbers and arithmetic should never be offered as a language feature. The
programmer wants rational or real numbers and arithmetic, but may be willing to accept the floating-
point approximation for the sake of efficiency. Floating-point, with a specific number of bits, is an
implementation limitation. Any alternative to floating-point that increases the accuracy without
taking too much time or space should be welcome.

ProTem is a rich programming system, offering many kinds of data and operators on data, and many
ways to structure a computation. Some features may be difficult to implement. And some features
may be of little use to most programmers. It may be a wise decision not to implement some features.

http://www.cs.utoronto.ca/~hehner/ratno.pdf

ProTem started 1987 May 22 version of 2019 January 27 page �27

For example, an implementer might decide that in a variable declaration, the type must be one of
nat int rat bin text [n*type]

where n is a natural number and type is any of these types just listed. No-one can complain that
the complete language is not implemented, since it is impossible to completely implement any
language. But ProTem is defined to allow all type expressions that make sense, so the next
implementation can implement programs that previous implementations could not accommodate.

Predefined Names

abs: real→real. Absolute value. abs x = if x≥0 then x else –x fi
all. All ProTem items.
asm. A machine-dependent program with one text parameter. If the argument represents an

assembly-language program, the execution is that of the represented assembly-language
program.

await. A program with one parameter of type real×s . If the argument represents the present or a
future time, its execution does nothing but takes time until the instant given by the argument.
If the argument represents the present or a past time, its execution does nothing. See time
and wait and s .

backspace: char.
backup: *nat → *nat. backup (s; i) = s .
bin = true, false.
bintext: bin→text. bintext true = “true” and bintext false = “false”.
calculus. A dictionary containing the following names.

e = 2.718281828459045 (approx). An approximation to the base of the natural logarithms.
exp: com→com. An approximation to e↑x .
lb: §〈r: real → r>0〉 → real. An approximation to the binary logarithm (base 2).
ln: §〈r: real → r>0〉 → real. An approximation to the natural logarithm (base e).
log: §〈r: real → r>0〉 → real. An approximation to the common logarithm (base 10).
pi = 3.141592653589793 (approximately). An approximation to the ratio of a circle's

circumference to its diameter.
ceil: real→int. r ≤ ceil r < r+1
char. The characters.
charnat: char→nat. A one-to-one function with inverse natchar .
click: char.
com. The complex numbers.
complex. A dictionary containing the following names.

arc: com → §〈r: real → 0 ≤ r < 2×pi〉. An approximation to the angle or arc of a complex
number.

i = sqrt (–1). The imaginary unit.
im: com→real. The imaginary part of a complex number.
re: com→real. The real part of a complex number.
abs: com→real. Absolute value. abs x = sqrt (re x ↑ 2 + im x ↑ 2) .

comtext: com→text A text representation of a complex number.
cursor: nat; nat. A variable telling the current cursor position.
dictionary: text. A readable summary of the content of the open dictionary that was opened last.
div: real → §〈r: real → r>0〉 → int. div a d is the integer quotient when a is divided by d .

(0 ≤ mod a d < d) ∧ (a = div a d × d + mod a d)
doubleclick: char.
encode: text→text. A not easily invertible function.
end: char. The end-of-file character. It is greater than all letters, digits, punctuation marks, space ,

ProTem started 1987 May 22 version of 2019 January 27 page �28

tab , and newline .
eval: text→*all. If the argument represents a ProTem data expression, the evaluation is that of the

represented data. It “unquotes” its argument. In eval “x” , the “x” refers to whatever x
refers to at the location where eval “x” occurs.

even: int→bin.
exec. A program with one text parameter. If the argument represents a ProTem program, the

execution is that of the represented program. It “unquotes” its argument. In exec “x:= x+1” ,
the “x” refers to whatever x refers to at the location where exec “x” occurs.

false: bin. A binary value.
find: all→[*all]→nat. If i is an item in L , then find i L is the index of its first occurrence; if not,

then find i L = #L .
fit: text→int→text. If i≥0 then fit t i is a text of length i obtained from t by either chopping off

excess characters from the right end or by extending t with spaces on the right end. If i≤0
then fit t i is a text of length –i obtained from t by either chopping off excess characters
from the left end or by extending t with spaces on the left end.

floor: real→int. floor r ≤ r < 1 + floor r
form: real→nat→nat→(nat+1)→text. Format a real number. form r d e w is a text representing real

r with the final digit rounded. d is the number of digits after the decimal point; if d=0 the
point is omitted. e is the number of digits in the exponent; if e>0 the decimal point will be
placed after the first significant digit; if e=0 the “×10↑” is omitted and the decimal point
will be placed as necessary. w is the total width; if w is greater than necessary, leading
blanks are added; if w is less than sufficient, the text contains stars.
form pi 4 1 12 = “ 3.1416×10↑0” . form (–pi) 2 0 6 = “ –3.14” .
form 5 0 0 3 = “ 5” . form (–5) 0 0 3 = “ –5” . form 123 0 0 2 = “**” .

formnum. A format for reading a number from a channel.
g unit. A unit representing mass in grams.
hyperbolic. A dictionary containing the following names.

cosh: com→com. An approximation to a hyperbolic function.
sinh: com→com. An approximation to a hyperbolic function.
tanh: com→com. An approximation to a hyperbolic function.

index = text→*nat. A signal to the implementation that the string will be used only as an index to
the indicated structure.

int. The integers.
inttext. A text representation of an integer number.
keys!? text. To the program that monitors key presses, it is an output channel; to all other programs,

it is an input channel.
m unit. A unit representing distance in meters.
mailin!? text. To the program that handles incoming mail, it is an output channel; to all other

programs, it is an input channel.
mailout!? text. To the program that handles outgoing mail, it is an input channel; to all other

programs, it is an output channel.
match: *all→*all→nat. If pattern occurs within subject , then match pattern subject is the index

of its first occurrence. If not, then match pattern subject = ↔subject .
maxint: int. The maximum representable integer (machine dependent).
maxnat: nat. The maximum representable natural (machine dependent).
minint: int. The minimum representable integer (machine dependent).
mod: real → §〈r: real → r>0〉 → real. mod a d is the remainder when a is divided by d .

(0 ≤ mod a d < d) ∧ (a = div a d × d + mod a d)
movie = *pic.
nat. The natural numbers.

ProTem started 1987 May 22 version of 2019 January 27 page �29

nattext. A text representation of a natural number.
natchar: charnat char → char. A one-to-one function with inverse charnat .
newline: char. The return or newline character.
nil. The empty string.
null. The empty bunch.
odd: int→bin.
ok. A program whose execution does nothing.
openlist: text. The names of the open dictionaries in the order they were opened.
pic = [x*[y*(0,..z)]] where x is the number of screen pixels in the horizontal dimension, y is the

number in the vertical dimension, and z is the number of pixel values. The screen pictures.
pre: char→char. The predecessor function.
printer!? text. To the printer, it is an input channel; to all other programs, it is an output channel.
randomnat. A dictionary containing the following three names.

init. A program with one natural parameter. Its execution assigns a hidden variable to the
natural value.

next. A program. Its execution assigns the hidden variable to the next value in a random
sequence.

value: nat→nat→nat. A reasonably uniform function, dependent on the hidden variable,
over the interval from (including) the first argument to (excluding) the second
argument.

randomreal. A dictionary containing the following three names.
init. A program with one real parameter. Its execution assigns a hidden variable to the real

value.
next. A program. Its execution assigns the hidden variable to the next value in a random

sequence.
value: real→real→real. A reasonably uniform function, dependent on the hidden variable,

over the interval between the arguments.
rat. The rational numbers.
rattext. A rext representation of a rational number.
real. The real numbers.
realtext: real→text A text representation of a real number.
round: real→int. r–0.5 ≤ round r < r+0.5
s unit. A unit representing time in seconds.
screen!? text. To the screen, it is an input channel; to all other programs, it is an output channel.
session: text. A text expression giving all keystrokes on channel keys since the start of a session.
sign: real → (–1, 0, 1).
sort: *ord→*ord where ord = real, char, [*ord].
sqrt: com→com. An approximation to the principle square root.
stop. A program whose execution does nothing and takes forever so that no computation can follow.
subst: all→all→*all→*all. subst x y s is a string formed from s by replacing all occurrences of y

with x . Substitute x for y in s .
suc: char→char. The successor function.
tab: char.
text = *char.
textcom: text→com. If the argument represents a complex number, the result is the represented

number.
textint: text→int. If the argument represents an integer, the result is the represented number.
textnat: text→nat. If the argument represents a natural number, the result is the represented number.
textrat: text→rat. If the argument represents a rational number, the result is the represented number.
textreal: text→real. If the argument represents a real number, the result is the represented number.

ProTem started 1987 May 22 version of 2019 January 27 page �30

texttime: text→(int×s). If the argument represents a time, the result is the represented time in
seconds since or before 2000 January 1 at 0:00 UTC (the midnight that begins 2000 January
1 at longitude 0). For example
texttime “1947 September 16 at 19:24 UTC” = –68675760×s .

time!? real×s. To the time provider, it is an output channel. To all other programs, it is an input
channel that gives the current time in seconds since 2000 January 1 at 0:00 UTC (the
midnight that begins 2000 January 1 at longitude 0). Times before then are negative.

timetext: (real×s)→text. A readable form of the time in seconds since or before 2000 January 1 at
0:00 UTC (the midnight that begins 2000 January 1 at longitude 0). For example,
timetext (–68675760×s) = “1947 September 16 at 19:24 UTC”

trig. A dictionary containing the following names.
arccos: §〈r: real → –1 ≤ r ≤ +1〉 → §〈r: real → 0 < r < pi/2〉. An approximation to a

trigonometric function.
arcsin: §〈r: real → –1 ≤ r ≤ +1〉 → §〈r: real → 0 < r < pi/2〉. An approximation to a

trigonometric function.
arctan: real → §〈r: real → 0 < r < pi/2〉. An approximation to a trigonometric function.
cos: real → §〈r: real → –1 ≤ r ≤ +1〉. An approximation to a trigonometric function.
sin: real → §〈r: real → –1 ≤ r ≤ +1〉. An approximation to a trigonometric function.
tan: (§〈r: real· ¬∃〈i: int· r = (2×i + 1)×pi〉〉) → real. An approximation to a trigonometric

function.
trim: text→text. A text formed from the argument by removing all leading and trailing space , tab,

and newline characters.
true: bin. A binary value.
wait. A program with one parameter of type real×s . If the argument is nonnegative, its execution

does nothing but takes the length of time in seconds given by the argument. If the argument
is nonpositive, its execution does nothing. See await and time and s . 

ProTem started 1987 May 22 version of 2019 January 27 page �31

Example Program

new simport ` a program to simulate portation
do `input: keys time

`output: screen
`need: ceil index nat real rat sqrt newline nattext textnat m s
`call: stop wait
`refer: randomnat

` Distance between control boxes is always 1 m.
` Merges do not overlap, so at most 1 corresponding box on the merging portway.
` Each divergence has a left branch and a right branch; there’s no straight.
` Leading to a divergence, boxes record only one square speed.

` start of declarations

new km:= 1000×m. new h:= 60×60×s. ` kilometer and hour

new maxaccel:= 1.5×m/s/s. ` maximum deceleration = –maxaccel
new speedlimit:= 60×km/h. ` speed limit is 60 km/h everywhere
new cushion:= 1×s. ` reaction time for all porters
new impatience:= 10/s. ` acceleration factor
new maxdistance:= ceil (speedlimit↑2 / (2×maxaccel)). ` max search distance ahead
new numporters:= 120.
new numboxes:= 7480.
new visualdelaytime:= 0.5 × s. ` for human viewing

new porter. ` so porter can be indexed before it is defined

new box: [numboxes *((“ahead left”, “ahead right”, “behind left”, “behind right”) → index “box”
| “beside” → index “box”
| “above” → index “porter”, numporters
| (“x”, “y”) → nat)] ` box position on screen

 = [numboxes * ((“ahead left”, “ahead right”, “behind left”, “behind right”) → 0
| “beside” → 0
| “above” → numporters

 | (“x”, “y”) → 0)].

new porter: [numporters * (“below” → index “box” ` what’s beneath
| “arrival time” → real×s ` arrival time at this box
| “speed” → real×m/s)] ` current speed

 = [numporters * (“below” → 0
 | “arrival time” → 0×s
 | “speed” → 0×m/s)].

new draw do 〈b: nat → 〈c: (“grey”, “blue”, “red”) → UNFINISHED〉〉 od.
` draws a box at screen position (box b “x”) (box b “y”) of color c.
` “grey” means no porter present, “blue” means porter present, “red” means crash

 ` UNFINISHED because graphical output has not yet been designed

http://www.cs.utoronto.ca/~hehner/Portation.pdf

ProTem started 1987 May 22 version of 2019 January 27 page �32

` end of declarations, start of initialization

new x: nat = 0. `for input
for b:= 0;..numboxes
do screen! “What box is ahead-left of box ”; nattext b; “? ”.

keys? screen!. x:= textnat keys.
box:= (b; “ahead left”) → x | (x; “behind left”) → b | box.
screen! “What box is ahead-right of box ”; nattext b; “? ”.
keys? screen!. x:= textnat keys.
box:= (b; “ahead right”) → x | (x; “behind right”) → b | box.
screen! “What box is beside box ”; nattext b; “? ”. keys? screen!.
box:= (b; “beside”) → textnat keys | box.
screen! “What are the x and y coordinates of box ”; nattext b; “? ”.
keys? screen!. box:= (b; “x”) → textnat keys | box.
keys? screen!. box:= (b; “y”) → textnat keys | box.
draw b “grey” od. ` default; may be changed below

for p:= 0;..numporters
do screen! “Porter ”; nattext p; “ is over what box? ”. keys? screen!. x:= textnat keys.

porter:= (p; “below”) → x | porter. box:= (x; “above”) → p | box.
draw x “blue” od.

old x.

init_randomnat 123456789. ` initialize a random number generator

` end of initialization, start of simulation

infiniteloop do time? real. new iterationstarttime:= time.

new p: (index “porter”) = 0. ` p:= the porter that arrived at its current position first
new t: (real×s) = 10↑38×s. ` t is a time, and 10↑38 is an approximation to ∞
for q:= index “porter”
do if porter q “arrival time” < t then t:= porter q “arrival time”. p:= q else ok fi od.
old t.

new b:= porter p “below”. ` the box below porter p
new bb:= box b “beside”. ` the box beside b; if none then bb=b
new boxesToDo: (*[index “box”; nat×m]) = nil.

` queue of boxes to be explored; their distances ahead of porter p
` queue is sorted by increasing distance ahead
` difference between any two distances in the queue is at most 1

` initialize boxesToDo
if bb = b then boxesToDo:= nil
else if box bb “above” = numporters then boxesToDo:= nil

else if porter (box bb “above”) “speed” < porter p “speed” then boxesToDo:= nil
else boxesToDo:= [bb; 0×m] fi fi fi.

boxesToDo:= boxesToDo; [box b “ahead left”; 1×m].
if box b “ahead left” = box b “ahead right” then ok
else boxesToDo:= boxesToDo; [box b “ahead right”; 1×m] fi.

ProTem started 1987 May 22 version of 2019 January 27 page �33

old b. old bb.

new accel: (real×m/s/s) = maxaccel. ` acceleration for porter p

` using boxesToDo calculate accel for porter p
new b: (index “box”) = (boxesToDo↓0) 0. ` the box we are looking at
new d: (nat×m) = (boxesToDo↓0) 1. ` its distance ahead of porter p
new calculateAccel ` of porter p due to porter pa if any
do 〈 pa: (index “porter”, numporters) →

if pa=numporters then ok
else new desiredspeed:=
 (sqrt (porter pa “speed”↑2 + 2×maxaccel×d + (maxaccel×cushion)↑2)
 – maxaccel×cushion) ∧ speedlimit.

accel:= ((desiredspeed–porter p “speed”)×impatience ∨ –maxaccel) ∧ accel
fi 〉 od.

nextbox do b:= (boxesToDo↓0) 0. d:= (boxesToDo↓0) 1.
boxesToDo:= boxesToDo↓(1;..↔boxesToDo).
if d>maxdistance then ok
else calculateAccel (box b “above”).

calculateAccel (porter (box b “beside”) “above”).
if box b “above” = numporters = porter (box b “beside”) “above”
then ` add boxes ahead to queue and continue

boxesToDo:= boxesToDo; [box b “ahead left”; d+1×m].
if box b “ahead left” = box b “ahead right” then ok
else boxesToDo:= boxesToDo; [box b “ahead right”; d+1×m] fi.
nextbox

else if ↔boxesToDo > 0 then nextbox else ok fi fi fi od.
old b. old d. old calculateAccel. old boxesToDo.

` using accel, move porter p ahead one box
new b: (index “box”) = porter p “below”.
box:= (b; “porter”) → numporters | box. draw b “grey”.
next_randomnat.
b:= box b if value_randomnat 0 2 = 0 then “ahead left” else “ahead right” fi.
if box b “porter” = numporters then ok else draw b “red”. stop fi. ` crash
porter:= (p; “below”) → b | porter. box:= (b; “above”) → p | box. draw b “blue”.
old b.
new speed:= sqrt (porter p “speed”↑2 + 2×accel×m) ∧ speedlimit.
porter:= (p; “arrival time”) → porter p “arrival time”

 + 2×m/(porter p “speed” + speed)
| (p; “speed”) → speed
| porter.

await (iterationstarttime+visualdelaytime).
old speed. old accel. old p. old iterationstarttime.
infiniteloop od od  

ProTem started 1987 May 22 version of 2019 January 27 page �34

Grammar LL(1/2)

In this grammar, for each nonterminal, every production except possibly the last begins with a
different terminal. So director sets are not needed, and that's why I call it LL(1/2). The parse stack
begins with only the program nonterminal on it, and ends empty with no more input.

program process programafterprocess
process phrase processafterphrase
programafterprocess || process programafterprocess

empty
phrase new newname phraseafternewname

old oldname
open dictionaryname
do program od arguments
if data then program else program fi arguments
for simplename := data do program od
〈 simplename parameterkind primary → program 〉 arguments
indvarname := data
channelname afterchannelname
newname do program od
programname arguments

parameterkind :
::
!
?

afterchannelname ! data
? data echo if echo is ! then data must be channelname

echo !
empty

processafterphrase . phrase processafterphrase
empty

phraseafternewname : primary = data
= data
:= data
! ? data
do program od
open
empty

data comparand aftercomparand
comparand element afterelement
element item afteritem
item term afterterm
term factor afterfactor
factor # factor

– factor
~ factor
+ factor
? factor
☐ factor
� factor

ProTem started 1987 May 22 version of 2019 January 27 page �35

* factor
primary factorafterprimary

primary number
text
if data then data else data fi arguments
result simplename : primary = data do program od arguments
{ data }
[data] arguments
(data) arguments
〈 simplename : primary → data 〉 arguments
indvarname arguments
depvarname arguments
constantname arguments
channelname

arguments number arguments
text arguments
if data then data else data fi arguments
result simplename : data do program od arguments
{ data } arguments
[data] arguments
(data) arguments
〈 simplename : primary → data 〉 arguments
indvarname arguments
depvarname arguments
constantname arguments
channelname arguments
empty

aftercomparand = comparand aftercomparand
< comparand aftercomparand
> comparand aftercomparand
≤ comparand aftercomparand
≥ comparand aftercomparand
� comparand aftercomparand
: comparand aftercomparand
∈ comparand aftercomparand
⊆ comparand aftercomparand
empty

afterelement , element afterelement
,.. element afterelement
| element afterelement
� data � element afterelement
empty

afteritem ; item afteritem
;.. item afteritem
‘ item afteritem
empty

afterterm + term afterterm
– term afterterm
+ term afterterm
∪ term afterterm

ProTem started 1987 May 22 version of 2019 January 27 page �36

empty
afterfactor × factor afterfactor

/ factor afterfactor
∩ factor afterfactor
∧ factor afterfactor
∨ factor afterfactor
∆ factor afterfactor
∇ factor afterfactor
@ factor afterfactor
empty

factorafterprimary ↑ factor
↓ factor
→ factor
* factor
empty

name simplename compounder
compounder _ dictionaryname compounder

empty
newname simplename not previously defined in the current scope
oldname simplename previously defined in the current scope
indvarname name defined as independent variable or variable parameter or result variable
depvarname name defined as dependent variable
constantname name defined as constant or constant parameter or for parameter or unit
channelname name defined as a channel
programname name defined as a program or procedure
dictionaryname name defined as a dictionary

For efficiency, the productions (except possibly the last) for each nonterminal should be placed in
order of frequency. The following nonterminals have only one production each, so they can be
eliminated: program process name data comparand element item term. The nonterminal name is
used only in the informal productions at the end.

Grammar LR(1/2)

The following grammar has no reduce-reduce choices and no shift-reduce choices. It has shift-shift
choices. Such a grammar is commonly called LR(0), but it shouldn't be, because a shift action is
essentially “looking at” an input symbol. So I'll compromise and call it LR(1/2). The parse stack
begins empty, and ends with only the program nonterminal on it and no more input.

program process
program || process

process phrase
process . phrase

phrase new newname : primary = data
new newname = data
new newname := data
new newname do program od
new newname ! ? data
new newname open
new newname unit

ProTem started 1987 May 22 version of 2019 January 27 page �37

new newname
old oldname
open dictionaryname
close dictionaryname
indvarname := data
channelname ! data
channelname ? data
channelname ? data ! data must be channelname
newname do program od
if data then program else program fi
for simplename : data do program od
do program od
procedure

procedure 〈 simplename : primary → program 〉
〈 simplename :: primary → program 〉
〈 simplename ! primary → program 〉
〈 simplename ? primary → program 〉
procedure argument
programname

data data = comparand
data � comparand
data < comparand
data > comparand
data ≤ comparand
data ≥ comparand
data : comparand
data ∈ comparand
data ⊆ comparand
comparand

comparand comparand , element
comparand ,.. element
comparand | element
comparand � data � element
element

element element ; item
element ;.. item
element ‘ item
item

item item + term
item – term
item + term
item ∪ term
term

term term × factor
term / factor
term ∧ factor
term ∨ factor
term ∆ factor
term ∇ factor
term ∩ factor

ProTem started 1987 May 22 version of 2019 January 27 page �38

factor
factor + factor

– factor
factor
~ factor
? factor
☐ factor
� factor
* factor
primary * factor
primary → factor
primary ↑ factor
primary ↓ factor
primary

primary primary argument
primary @ argument
argument

argument number
text
[data]
{ data }
(data)
〈 simplename : primary → data 〉
if data then data else data fi
result simplename : primary = data do program od
indvarname
depvarname
constantname
channelname

name simplename
name _ simplename

newname simplename not previously defined in the current scope
oldname simplename previously defined in the current scope
indvarname name defined as independent variable or variable parameter or result variable
depvarname name defined as dependent variable
constantname name defined as constant or constant parameter or for parameter or unit
channelname name defined as a channel
programname name defined as a program or procedure
dictionaryname name defined as a dictionary

The nonterminal name is used only in the informal productions at the end.

