
ProTem started 1987 May 22 version of 2023 December 14 page 0

ProTem
Eric Hehner

ProTem is a programming system that serves as both programming language and operating system,
and includes a theorem prover to check each step of program composition. This document is an
informal specification of ProTem. Formal specifications of the data types and program semantics
can be found in the book a Practical Theory of Programming (with syntactic differences).
“ProTem” also means “for now”, short for the Latin words “pro tempore”.

Programming languages and operating system languages have a lot of functionality in common, but
differ greatly in syntax and terminology. These differences are historical, accidental, and
unnecessary. They complicate a programmer's life with no benefit. For example, a file is just a
variable; file update and storage are just assignment. By unifying the programming language and
the operating system commands, both gain in functionality. Communication channels and file piping
are as useful in programming as they are in operating systems. Directories are useful in large-scale
multi-programmer programs. Conditional execution (if) and indexed loops (for) are useful
operating system commands.

ProTem is also designed for easy proof of correctness, including functionality, time requirements,
and space requirements. To that end, loops can be constructed by labeling any block of code with a
specification, and then using the specification within the block of code. For example,

« n≥0 ⇒ nʹ=0 » ⟦if n>0 ⟦n:= n–1. « n≥0 ⇒ nʹ=0 »⟧⟧
The proof methods are the subject of the book a Practical Theory of Programming and paper
Specified Blocks. They do not require preconditions, postconditions, invariants, or variants. If proof
is not wanted, then an ordinary name can be used as label. For example,

loop ⟦if n>0 ⟦n:= n–1. loop⟧⟧

A primary design criterion is to make ProTem a small, easy-to-learn, easy-to-use language. The size
of a language can be measured by the number of symbols and by the complexity of grammar
structure, which can be measured by the number of nonterminals. ProTem has 8 keywords. (Python
has 35, C has 36, Pascal has 36, Haskell has 37, Ada has 62, MS Basic has 205.) ProTem is
presented by a Presentation Grammar, which has just the structure that a programmer needs to know,
not all the structure that a compiler needs. It has 2 nonterminals (program and data) plus some
informally defined kinds of names. (There is also an LL(1) grammar with 25 nonterminals and an
LR(0) grammar with 14 nonterminals at the end of this document. For comparison, the Haskell
grammar has 68 nonterminals, and the Python grammar has 87 nonterminals.) The design ethos
demands an extremely good reason for adding a new feature to ProTem that requires a new keyword
or syntax. That same design ethos will not tolerate any addition to the 2 nonterminals in the
Presentation Grammar.

To judge ease of use, you need to use the language, but you may get a sense of the ease of use (and
of the beauty of the language, if that is of interest) from reading example programs. For that
purpose, there are example programs near the end of this document.

The design of ProTem is complete except for the following. I need to describe and compose picture
and sound elements. I need to define touchpad and touchscreen gestures. I may need to define
regions of documents to be clickable links.

An implementation of ProTem, written in ProTem, is partially complete.

http://www.cs.utoronto.ca/~hehner
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/SB.pdf
http://www.cs.utoronto.ca/~hehner/PTI.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 1

Contents

Introduction Named-Program versus Program Definition
Contents Output and Input
Symbols Channel Definition
Presentation Grammar Plan

Order of Exection and Evaluation Dictionary Definition
Using ProTem Measuring Unit Definition
Data Forward Definition

Numbers Name Removal
Characters Synonym Definition
Binary Values Format
Bunches Commands
Sets Pause
Strings Abort
Lists Verify
Conditional Data Type Checking
Functions Session
Named-Data Undo
value-Data Edit

Quote and Unquote Display
Scope Names
Programs Memo

Variable Definition Context
Assignment Predefined Names
Constant Definition Miscellaneous
Data Definition Intentionally Omitted Features
Data Recursion Implementation Philosophy
Named-Data versus Data Definition Example Programs
Constant Definition versus Data Definition Portation Simulation
Sequential Composition Quote Notation Lengths
Concurrent Composition Minimum Redundancy Codes
if-Program Read Password
case-Program Grammars
for-Program LL(1) Grammar
Program Definition LR(0) Grammar
Named-Program Acknowledgements

As you read this document the first time, you will encounter language constructs that have not been
defined yet. This document has been written to minimize the problem, but due to the highly
mutually recursive nature of the language constructs, there is no linear order that completely avoids
the problem. (The same was true of the ALGOL-60 report, and every decent programming language
document since.) When you encounter a not-yet-explained language construct, understand whatever
you can about it, but do not be stopped by it. During the second and subsequent readings of this
document, all language constructs fall into place.

I am perfectly well aware that “data” is a Latin word; it is the plural gerund from the verb “dare”,
which means “to give”, so the data are the givens. The singular is “datum”. But this is an English
document, and I have decided to use the word “data” for both singular and plural. I have also
decided to say “indexes” rather than “indices”.

ProTem started 1987 May 22 version of 2023 December 14 page 2

Symbols

ProTem has 8 keywords, plus 4 kinds of lexeme, and 71 other symbols; altogether they are:
case else for if new old plan value
number text name comment
“ ” « » ` ‘ , ,.. ; ;; ;.. . ! ? ?? : :: := = ≠ < > ≤ ≥ _ # #1 \ | || ∞ & % ⊤ ⊥
+ – × / → ↔ ∧ ∨ ^ ^^ @ * ~ ¢ $ ∈ ☐ ⊲ ⊳ ⊨ ⫤ () { } [] 〈 〉 (| |) ⟦ ⟧ (: :)

Keywords and multicharacter symbols cannot have spaces between the characters.

Some of the ProTem symbols may not be on your keyboard. Here are the substitutes.
for “ use " for ” use " for « use << for » use >>
for ‘ use ' for ≠ use /= for ≤ use <= for ≥ use >=
for – use - for × use >< for → use -> for ↔ use <>
for ∧ use / \ for ∨ use \ / for use // for ∈ use :~
for ⊲ use <| for ⊳ use |> for (: use (: for :) use :)
for ⊨ use |= for ⫤ use =| for 〈 use <: for 〉 use :>
for (| use (| for |) use |) for ⟦ use [| for ⟧ use |]
for ☐ use [] for ∞ use infinity for ⊤ use true for ⊥ use false

The names infinity , true , and false are predefined, and redefinable.

A number is formed as one or more decimal digits, with an optional decimal point between digits. A
decimal point must have at least one digit on each side of it. Commas and spaces between digits are
not allowed. Here are four examples.

0 275 27.5 0.21

A text begins with a left-double-quote, continues with any number of any characters, and ends with a
right-double-quote. Within a text, a double-quote (left or right) must be underlined or written twice.
Characters within a text are not limited to any alphabet. Here are six examples.

“” “abc” “don't” “Just say “no”.” “Just say ““no””.” “♠ ♣ ♥ ♦ ”

A name is either simple or compound. A simple name is either plain or fancy. A plain simple name
begins with a letter from an alphabet (this document uses the 26 small italic and 26 capital italic
letters of the English alphabet), and continues with any number of letters and decimal digits, except
that keywords cannot be names. A fancy simple name begins with « , continues with any number of
any characters, and ends with » . Within a fancy simple name, a « or » must be underlined or
written twice. Characters within a fancy simple name are not limited to any alphabet. A compound
name is composed of two or more simple names joined with backslash \ characters. For examples:

plain simple names: x A123 refStack
fancy simple names: «Rick & Margaret» « xʹ ≥ x » «left«center»right»
compound names: ProTem\grammars\LL1 CS\«grad recruiting»\«2016-9-8»

At each point in a program, a name is one of
newname: a simple name that is not defined in the current scope,

or a compound name that is not defined in its dictionary in the current scope.
oldname: a simple name that is defined in the current scope,

or a compound name that is defined in its dictionary in the current scope.
An oldname is defined as one of: variablename, constantname, dataname,

programname, channelname, unitname, or dictionaryname.

A comment begins with ` and ends at the end of the line. Characters within a comment are not
limited to any alphabet. For example: ` I❤ ProTem

ProTem started 1987 May 22 version of 2023 December 14 page 3

Presentation Grammar

ProTem will be explained in complete detail in the following sections. In this section, for reference,
we present the grammar. There are 36 ways of forming a program, all listed in the left column.
There are a few words of explanation in the right column.
new newname : data := data define variablename with type and initial value
new newname := data define constantname and evaluate data
new newname (| data |) define dataname but do not evaluate data
new newname ⟦ program ⟧ define programname but do not execute program
new newname ? data ! data define channelname with type and initial value
new newname #1 define measuring unitname
new newname \ define dictionaryname
new newname \ \ dictionaryname define dictionaryname with definitions
new newname oldname define synonym
new newname forward definition of dataname or programname
old oldname undefine, remove, or hide
variablename := data assign variable to value
channelname ! data to channel send output
channelname ? data (: data :) data from channel receive input in this pattern
channelname ? data (: data :) data ! channelname from channel receive input in this pattern and echo
channelname ? ! channelname from channel receive input in default pattern and echo
simplename ⟦ program ⟧ define programname and execute program
programname execute (call) named-program
program . program sequential composition
program || program concurrent composition
if data ⟦ program ⟧ if-program
if data ⟦ program ⟧ else ⟦ program ⟧ if-else-program
case data ⟦ program ⟧ case-program
case data ⟦ program ⟧ else ⟦ program ⟧ case-else-program
program ⟧ ⟦ program case separator in a case-program or case-else-program
for simplename : data ⟦ program ⟧ for-program, index is constantname
plan simplename : data ⟦ program ⟧ plan, parameter is constantname
plan simplename := data ⟦ program ⟧ plan, parameter is variablename
plan simplename ! data ⟦ program ⟧ plan, parameter is output channelname
plan simplename ? data ⟦ program ⟧ plan, parameter is input channelname
plan simplename \ ⟦ program ⟧ plan, parameter is dictionaryname
program data plan, data argument
program variablename plan, variable argument
program channelname plan, channel argument
program dictionaryname plan, dictionary argument
⟦ program ⟧ scope, program brackets

There are 60 ways of expressing data. Examples and pronunciations are shown on the right side.
number 0 1.2
∞ infinity, the infinite number
data & data complex number x&y = x + i×y
data % percentage x% = x/100
+ data plus, identity
– data minus, negation, not
data + data plus, addition

ProTem started 1987 May 22 version of 2023 December 14 page 4

data – data minus, subtraction
data × data times, multiplication
data / data divided by, division
data ^ data to the power, exponentiation
data ^^ data scale, scientific notation x^^y = x × 10^y
⊤ top, true
⊥ bottom, false
data ∧ data minimum, conjunction, and, set intersection
data ∨ data maximum, disjunction, or, set union
data = data equals, equation
data ≠ data not equals, differs from, exclusive or
data < data less than, strict implication, strict subset
data > data greater than, strict reverse implication, strict superset
data ≤ data less than or equal to, implication, subset
data ≥ data greater than or equal to, reverse implication, superset
data , data bunch union (0, 2), (2, 5) = 0, 2, 5
data ,.. data bunch from (including) to (excluding) 0,..3 = 0,1,2
data ‘ data bunch intersection (0, 2, 5) ‘ (2, 5, 9) = 2, 5
data : data bunch inclusion 2, 5: 0, 2, 5, 9
data :: data reverse bunch inclusion 0, 2, 5, 9:: 2, 5
¢ data bunch size, bunch cardinality ¢(0,..5) = 5
{ data } set {0, 2, 5} {0,..5} set brackets
~ data contents of a set or list ~{0, 2, 5} = 0, 2, 5
$ data set size, set cardinality ${0, 2, 5} = 3
data ∈ data elements of a set 2, 3 ∈ {0, 2, 3, 5}
 data power (0, 1) = {null}, {0}, {1}, {0, 1}

text “” “abc” “Just say “no”.”
data ; data string join 0; 2; 5
data ;.. data string from (including) to (excluding) 0;..3 = 0;1;2
data _ data string indexing (2; 3; 7; 3)_2 = 7
data ⊲ data ⊳ data string modification 3; 4; 5 ⊲1⊳6 = 3; 6; 5
↔ data string length ↔(2; 3; 7; 3) = 4
data * data definite repetition 3*2 = 2; 2; 2
* data indefinite repetition *2 = nat*2
[data] list [3; 6; 5] list brackets
data ;; data list join [3; 6];;[7; 4] = [3; 6; 7; 4]
data list length, function size #[2; 3; 7; 3] = 4
data data list index, function argument, composition f x
data @ data pointer indexing L@(i; j) = L i j
〈 simplename : data . data 〉 function, parameter is constantname 〈n: nat. n+1〉
data → data function, function space nat→bin = 〈n: nat. bin〉
☐ data domain of a list or function ☐〈n: nat. n+1〉 = nat
data | data selective union 2→8 | [3; 6; 7; 4] = [3; 6; 8; 4]
variablename variable name
constantname constant name
dataname data name and evaluate data
channelname ? the most recent data read on the channel
channelname ?? test for written but unread data on the channel
unitname unit name, positive finite real number constant
data ⊨ data ⫤ data conditional data, if data then data else data
simplename (| data |) named-data, defines dataname, data brackets
value simplename : data := data ⟦ program ⟧ value-data, defines variablename
(data) evaluation brackets

ProTem started 1987 May 22 version of 2023 December 14 page 5

Order of Execution and Evaluation

Here is the order of execution of the forms of program.
0 new old := ! ? programname plan if case for ⟦ ⟧
1 plan argument left-to-right
2 ||
3 .
Program brackets ⟦ ⟧ can always be used to change the order of execution.

Here is the order of evaluation of the forms of data.
0 number text name ⊤ ⊥ ∞ () [] { } 〈 〉 (| |) (: :) value
1 list index function argument postfix % ? ?? infix _ @ & left-to-right
2 prefix + – ¢ $ ↔ # ~ ☐ * infix * → ^ ^^ right-to-left
3 infix × / ∧ ∨ left-to-right
4 infix + – ;; ; ;.. ‘ left-to-right
5 infix , ,.. | ⊲⊳ left-to-right
6 infix = ≠ < > ≤ ≥ : :: ∈ continuing
7 infix ⊨ ⫤ right-to-left
Evaluation brackets () can always be used to change the order of evaluation.

On level 6, the operators are “continuing”; this means, for example, that a=b=c neither associates
to the left (a=b)=c nor associates to the right a=(b=c) , but means (a=b)∧(b=c) . Similarly
a<b=c≤d means (a<b)∧(b=c)∧(c≤d) .

Using ProTem

Following the prompt ➮ , key in a program. As you do so, keywords become bold, plain names
become italic, and keyboard substitutes become the proper symbols. A program may stretch over
many lines, including spaces, tabs, and new line characters between symbols. You may make
changes to a program using the delete (backspace) key and standard cut/copy/paste editing
commands. When you are finished, send the end character, either by pressing the escape key, or by
pressing ctl . , which is the simultaneous combination of the control key and the period (point) key.
Then the program is checked for errors; if there are errors, you are told what the errors are, and
invited to correct them; if there are no errors, your program is executed. For example, following the
prompt ➮ , you can key in

! 2+2
The ! means output to the screen (see Output and Input). Then send end . Since there are no
errors, the program is executed, causing 4 to be printed on the screen. Thus ProTem can be used as
a calculator.

As we will see in Constant Definition, the program
new temp:= 2+2

followed by end , saves the result of the calculation 2+2 under the name temp , perhaps for use in
further calculation. As we will see in Program Definition, the program

new myprogram ⟦! “2+2=”; temp⟧
followed by end , defines and saves a program named myprogram . The saved program is not
immediately executed. To execute this saved program, key in

myprogram
followed by end . Saved definitions can be edited using the command ctl e (see Edit).

ProTem started 1987 May 22 version of 2023 December 14 page 6

Data

The basic data are numbers, characters, and binary values. The data structures are bunches, sets,
strings, and lists. Also, there are conditional data, functions, named-data, and value-data.

Numbers

Numbers are not divided into disjoint types. A natural number is an integer number; an integer
number is a rational number; a rational number is a real number; a real number is a complex
number. There is also an infinite number ∞ , greater than all other numbers, and –∞ , less than all
other numbers, included in the reals.

The one-operand postfix operator % means division by 100 ; for examples, 99.9% , x% , and
(x+y)% . There are two one-operand prefix operators + and – . There are nine two-operand infix
operators + – × / ^ ^^ ∧ ∨ & . Division of integers, such as 1/2 , may produce a noninteger.
Exponentiation is 2-operand infix ^ ; for example, 1.2×10^3 (one point two times ten to the power
three), which can be written more briefly as 1.2^^3 , and in general, x^^y = x×10^y . The operator
∧ is minimum (arms down, does not hold water; note that ^ and ∧ are different). The operator ∨
is maximum (arms up, holds water). In addition to the number symbols, there are predefined names
of numbers such as pi (the ratio of a circle's circumference to its diameter), e (the base of the
natural logarithms), and i (the imaginary unit, a square root of –1). The complex number x + i×y
can be written more briefly as x&y . There are predefined function names such as abs, arc, arccos,
arcsin, arctan, ceil, cos, cosh, div, exp, floor, im, lb, ln, log, mod, rand\Int, rand\Real, re, round, sin,
sinh, sqrt, tan, and tanh (see Predefined Names). Predefined names can be redefined.

Characters

A character is a text of length 1 . We leave it to each implementation to list the characters, and to
state their order. In addition to the character symbols such as “a” (small a) and “ ” (space), there
are some predefined character names: delete (backspace), tab , nl (new line, next line, return,
enter), click , doubleclick , and end . The end character is invisible and takes no space; it is
sometimes useful as a sentinel at the end of a text. Predefined functions suc and pre give the
successor and predecessor in the character order; “ ” (space) comes first and end comes last.
Predefined functions charnat and natchar map between characters and their (possibly extended
ASCII or unicode) numeric encodings. Some key combinations, such as ctl . and ctl e , are
characters and have numeric encodings.

Binary Values

The two binary values are ⊤ and ⊥ . Negation is – , conjunction (minimum) is ∧ , disjunction
(maximum) is ∨ . The infix two-operand operators = and ≠ apply to all data in ProTem with a
binary result; the two operands may even be of different types.

The order operators < > ≤ ≥ apply to real numbers (including rationals, integers, and naturals), to
characters, to binary values, to sets (subset, superset), to strings of ordered items lexicographically,
and to lists of ordered items lexicographically, with a binary result. In the binary order, ⊥ is below
⊤ , so ≤ is implication.

The postfix operator ?? applies to channels, and has a binary result saying whether there is written
but unread data on the channel.

ProTem started 1987 May 22 version of 2023 December 14 page 7

Bunches

Any number, character, binary value, set, string of elements, and list of elements is an elementary
bunch, or synonymously, an element. For example, the number 2 is an elementary bunch, or
element. Every data expression is a bunch expression, though not all are elementary.

Bunch union is denoted by a comma:
A , B A union B

For example,
2, 3, 5, 7

is a bunch of four integers. There is also the notation
x,..y x to y

where x and y are integers or ∞ or characters that satisfy x≤y . Note that x is included and y is
excluded. For example, 0,..3 consists of the first three natural numbers 0,1,2 , and 5,..5 is the
empty bunch null .

For any A and B ,
A: B A is included in B
A:: B A includes B

are binary. The size (or cardinality) of A is ¢A . For examples, ¢null = 0 , ¢0 = 1 , ¢(0, 1) = 2 ,
and ¢(a,..b) = b–a . The evaluation brackets () are needed for the order of data evaluation.
Bunches are equal if and only if they include the same elements, ignoring order and multiplicity.

Bunches serve as a type structure in ProTem, as the contents of sets, and other uses. There are
several predefined bunch names:

null the empty bunch
nat all natural numbers. Examples: 0 1 2
int all integer numbers. Examples: –2 –1 0 1 2
rat all rational numbers. Examples: 1/2 3.4
real all real numbers. Example: 2^(1/2) = 1.4142, –1.4142 approximately
com all complex numbers. Examples: (–1)^(1/2) = i, –i 3&4 = 3+4×i
char all characters. Examples: “a” “ ” ““” delete nl end
bin both binary values: ⊤, ⊥
text all texts (character strings). Examples: “abc” “Say “hi”.”
ord the ordered type for which ∧ ∨ < > ≤ ≥ are defined
all all ProTem data values

In ProTem, all operators that come before bunch union in the order of evaluation, except ¢ and ,
distribute over bunch union. Infix * distributes in its left operand only. For examples,

–(3, 5) = –3, –5
(2, 3)+(4, 5) = 6, 7, 8

This makes it easy to express the plural naturals nat+2 , the even naturals nat×2 , the square
naturals nat^2 , the natural powers of two 2^nat , and many other things.

Sets

A set is formed by enclosing a bunch in set brackets. For examples, {0, 2, 5} , {0,..100} , {null} ,
{nat} . The inverse of set formation is the content operator ~ . For example, ~{0, 1} = 0,1 . The
size (or cardinality) of a set, traditionally written |S| , is $S in ProTem. For examples, ${0, 1} = 2 ,
${null} = 0 , and ${nat} = ∞ . The element relation is x∈S . For example, 1, 2 ∈ {0, 1, 2, 3} . The

ProTem started 1987 May 22 version of 2023 December 14 page 8

union operator, traditionally ∪ , is ∨ in ProTem. The intersection operator, traditionally ∩ , is ∧ .
Subset, traditionally ⊆ , is ≤ ; strict subset is < ; superset is ≥ ; strict superset is > . The power
operator takes a bunch as operand and produces the bunch of all sets that contain only elements of
the operand. For example, (0, 1) = {null}, {0}, {1}, {0, 1} . In (0, 1) , the evaluation brackets ()
are needed due to the order of data evaluation.

Strings

There is a predefined string name:
nil the empty string

Any number, character, binary value, set, list, and function is a one-item string, or synonymously, an
item. For example, the number 2 is a one-item string, or item.

String join is denoted by a semi-colon:
S ; T S join T

For example,
2; 3; 5; 7

is a string of four integers. There is also the notation
x;..y x to y (same pronunciation as x,..y)

where x and y are integers or ∞ or characters that satisfy x≤y . Again, x is included and y is
excluded. For examples, 0;..3 = 0;1;2 and 5;..5 = nil .

The length of a string is obtained by the ↔ operator. For examples, ↔nil = 0 , ↔2 = 1 ,
↔(2; 3; 5; 7) = 4 , and ↔(x;..y) = y–x . The evaluation brackets () are needed for the order of data
evaluation.

A string is indexed by the _ operator. Indexing is from 0 . For example, (2; 3; 5; 7)_2 = 5 . A
string can be indexed by a string. For example, (3; 5; 7; 9)_(2; 1; 2) = 7; 5; 7 .

If S is a string and n is an index of S and i is any item, then S⊲n⊳i is a string like S except
that item n is i . For example, 3; 5; 9 ⊲2⊳8 = 3; 5; 8 . This operator associates from left to
right, so 3; 5; 9 ⊲2⊳8⊲1⊳7 = ((3; 5; 9)⊲2⊳8)⊲1⊳7 = (3; 5; 8)⊲1⊳7 = 3; 7; 8 . And
3; 5; 9 ⊲2⊳8⊲2⊳7 = ((3; 5; 9)⊲2⊳8)⊲2⊳7 = (3; 5; 8)⊲2⊳7 = 3; 5; 7 .

A text is a more convenient notation for a string of characters.
“abc” = “a”; “b”; “c”
“He said “Hi”.” = “H”; “e”; “ ”; “s”; “a”; “i”; “d”; “ ”; ““”; “H”; “i”; “””; “.”
“abcdefghij”_(3;..6) = “def”

Strings are equal if and only if they have the same length, and corresponding items are equal. They
are ordered lexicographically. For examples,

3; 5 < 3; 5; 2 < 3; 6
(3; 5)∨(3; 5; 2) = 3; 5; 2

A bunch of items is an item. Join distributes over bunch union, so
(3, 4); (5, 6) = 3;5, 3;6, 4;5, 4;6

A string is an element (elementary bunch) if and only if all its items are elements.

If S is a string and n is a natural number, then

ProTem started 1987 May 22 version of 2023 December 14 page 9

n * S n copies of S , or n S 's
is a string, and

* S strings of S , or any number of S 's
is a bunch of strings. For examples,

3*5 = 5;5;5
3*(4, 5) = 4;4;4, 4;4;5, 4;5;4, 4;5;5 5;4;4, 5;4;5, 5;5;4, 5;5;5
*5 = nil, 5, 5;5, 5;5;5, 5;5;5;5, and so on

The * operator distributes over bunch union in its left operand only.
null*5 = null
(2,3)*5 = 2*5, 3*5 = 5;5, 5;5;5

Using this semi-distributivity, we have
*a = nat*a

Lists

A list is a packaged string. It can be written as a string enclosed in list brackets. For example,
[0; 1; 2]

Let L and M be lists, let n be a natural number, and let p be a string of natural numbers. The list
operators are:

☐ L domain of L
~ L content of L
L length of L
L n L at n , L at index n
L @ p L at p , L at pointer p
L ;; M L join M
L M L composed with M
L | M L otherwise M , the selective union of L and M
i → x | L index i is item x and otherwise L

plus the operators L∧M , L∨M , L=M , L≠M , L<M , L>M , L≤M , L≥M . For examples,
☐[10; 11; 12] = 0, 1, 2 the domain of a list
~[10; 11; 12] = 10; 11; 12 the content of a list
#[10; 11; 12] = 3 the length of, or number of items in, a list
[10;..20] 5 = 15 indexing starts at zero
[[2; 3]; 4; [5; [6; 7]]] @ (2; 1; 0) = 6
[0;..10];;[10;..20] = [0;..20] joining lists
[10;..20] [3; 6; 5] = [13; 16; 15] composition (L M)n = L(M n)

By using the @ operator, a string acts as a pointer to select an item from within an irregular
structure. If the list L | M is indexed with n , the result is either L n or M n depending on
whether n is in the domain (0,..#L) of L . If it is, the result is L n , otherwise the result is M n .

[10; 11] | [0;..10] = [10; 11; (2;..10)]
1→21 | [10; 11; 12] = [10; 21; 12]

The index can be a string, as in
(0;1) → 6 | [[0; 1; 2]; [3; 4; 5]] = [[0; 6; 2]; [3; 4; 5]]

When a string or list is indexed by a structure, the result has the same structure as the index.
(10;..20) _ [2; (3, 4); [5; [6; 7]]] = [12; (13, 14); [15; [16; 17]]]
[10;..20] [2; (3, 4); [5; [6; 7]]] = [12; (13, 14); [15; [16; 17]]]

Let S = 10; 11; 12 . Then

ProTem started 1987 May 22 version of 2023 December 14 page 10

S_(0, {1, [2; 1]; 0})
= S_0, {S_1, [S_2; S_1]; S_0}
= 10, {11, [12; 11]; 10}

Let L = [10; 11; 12] . Then
L (0, {1, [2; 1]; 0})

= L 0, {L 1, [L 2; L 1]; L 0}
= 10, {11, [12; 11]; 10}

Lists are equal if and only if they have the same length and corresponding items are equal. They are
ordered lexicographically. For examples,

[3; 5] < [3; 5; 2] < [3; 6]
[3; 5]∨[3; 5; 2] = [3; 5; 2]

The list brackets [] distribute over bunch union. For example,
[0, 1] = [0], [1]

Thus [10*nat] is all lists of length 10 whose items are natural, and [4*[6*real]] is all 4 by 6 arrays
of reals.

Conditional Data

The 3-operand expression x ⊨ y ⫤ z , pronounced “if x then y else z ”, has binary operand x , but
y and z are of arbitrary type. For example,

y≠0 ⊨ x/y ⫤ “nan”
If y≠0 has value ⊤ , then this data expression has number value x/y . If y≠0 has value ⊥ , then
this data expression has text value “nan” . This operator associates from right to left. For example,

(a ⊨ b ⫤ c ⊨ d ⫤ e) = (a ⊨ b ⫤ (c ⊨ d ⫤ e))
If a has value ⊤ , then this expression has value b , with no need to evaluate c , d , or e . If a
has value ⊥ , there is no need to evaluate b .

Functions

A function defines a parameter; that is its only job. Let p (parameter) be any simple name, let D
(domain) be any data expression (but not using p), and let B (body) be any data expression
(possibly using p as a constant name for an element of D). Then 〈p: D. B〉 is a function with
parameter p , domain D , and body B . For example,

〈n: nat. n+1〉 map n in nat to n+1
is the successor function on the natural numbers. The parameter name begins its scope at the left
function bracket 〈 and ends its scope at the right function bracket 〉 (see Scope). Consequently, the
parameter name can be any simple name, even one that has already been defined in the scope that
encloses the function. The ☐ operator gives the domain of a function. For example,

☐〈n: nat. n+1〉 = nat
The # operator gives the size of the function, which is the size of its domain. For examples,

#〈n: 0,..10. n+1〉 = 10
#〈n: nat. n+1〉 = ∞

A function of n+1 parameters is a function of 1 parameter whose body is a function of n
parameters. For example, the average function

〈x: rat. 〈y: rat. (x+y)/2〉〉
has two parameters. The notation for applying a function to an argument is the same as that for
indexing a list: adjacency. If f is a function of two parameters, then f x y applies f to x and y .

ProTem started 1987 May 22 version of 2023 December 14 page 11

Caution: in some languages, applying f to x and y is f (x, y) . In ProTem, comma is bunch
union, and function application distributes over bunch union. So in ProTem, f (x, y) = f x, f y .

The predefined function realtext has four parameters. The first three parameters say how to format a
number, and the last is the number to be formatted. For example, realtext 4 1 10 pi = “ 3.1416^^0” .
We can define a new function

new myrealtext (|realtext 4 1 10|)
by supplying just three parameters, and then apply it to a number to be formatted:

myrealtext pi = “ 3.1416^^0”

When the body of a function does not use its parameter, there is a syntax that omits the unused name.
For example, 2→3 means 〈n: 2. 3〉 or choose any other parameter name. And nat→bin means
〈n: nat. bin〉 or choose any other parameter name.

Argumentation comes before bunch union in the order of data evaluation, and so it distributes over
bunch union.

(f, g) (x, y) = f x, f y, g x, g y
If you want to apply a function to a bunch without distributing over the elements of the bunch, you
must package the bunch as a set.

Allowing the body of a function to be a bunch generalizes the function to a relation. For example,
nat→bin can be viewed in either of the following two ways: it is a function (with unused and
omitted parameter) that maps each natural to bin ; it is all functions with domain at least nat and
range at most bin . As an example of the latter view, we have

〈i: int. i<10〉 : nat→bin

If f and g are functions, then
f | g “ f otherwise g ”, “the selective union of f and g ”

is a function that behaves like f when applied to an argument in the domain of f , and otherwise behaves
like g .

☐(f | g) = ☐f, ☐g
(f | g) x = (x:☐f ⊨ f x ⫤ g x)

The function 〈f: nat→rat. f 2〉 is “higher order”, which means it has a function-valued parameter. It
can be applied to any function with domain at least nat and range at most rat .

Let f and g be functions such that –(f: ☐g) (f is not in the domain of g). Then g f is the
composition of g and f .

(x: ☐(g f)) = (x: ☐f) ∧ (f x: ☐g)
(g f) x = g (f x)

Named-Data

Named-data has the form
simplename (| data |)

Within the data brackets (| |) , the simplename stands for the data recursively. The simplename
begins its scope at the left data bracket and ends its scope at the corresponding right data bracket (see
Scope). Consequently, the name can be any simple name, even one that has already been defined in
the scope that encloses the named-data.

ProTem started 1987 May 22 version of 2023 December 14 page 12

For example, here is a bunch of texts (a pattern or grammar).
term (| “a”, “b”, term; “+”; term , term; “–”; term |)

This bunch includes the text “a+b+a–a” and many more texts. It is equivalent to
(“a”, “b”); *((“+”, “–”); (“a”, “b”))

Data is evaluated as needed. The preceding bunch is infinite, but it may appear in a context that does
not require its complete evaluation. For example, the binary expression

“a+b+a–a”: term (| “a”, “b”, term; “+”; term , term; “–”; term |)
can be evaluated to ⊤ without fully evaluating the named-data to the right of the colon.

Here is the factorial function.
fact (| 0 → 1 | 〈n: nat+1. n × fact (n–1)〉 |)

If we were to fully evaluate it by applying it to all its arguments, the evaluation would take infinite
time and memory. But

fact (| 0 → 1 | 〈n: nat+1. n × fact (n–1)〉 |) 5
applies the function to one argument, 5 , and the evaluation takes finite time and memory.

The expression
tree (| [nil], [tree; int; tree] |)

is all binary trees with integer nodes.

Here is a named-data expressing the infinitely long text ∞*“❤ ” that is all hearts.
hearts (| “❤ ”; hearts |)

A named-data is equal to the data with all occurrences of the name replaced by the named-data. So
hearts (| “❤ ”; hearts |)

= “❤ ”; hearts (| “❤ ”; hearts |)
= “❤ ”; “❤ ”; hearts (| “❤ ”; hearts |)
and so on. Evaluation of hearts (| “❤ ”; hearts |) _ 5 gives “❤ ” .

value-Data

A value-data allows us to use a program to compute data. It has the form
value simplename : data := data ⟦ program ⟧

A local variable, called the value-variable, is defined with a type and initial value. Then the program
is executed. The result is the final value of the value-variable. We have not yet presented programs,
but the following example, which approximates the base of the natural logarithms e , should give
the idea.

value sum: rat:= 1
⟦new term: rat:= 1.
 for i: 1;..15 ⟦term:= term/i. sum:= sum+term⟧⟧

There are no side effects. Nonlocal variables become constants within the program; their values
may be used, but assigning them is not permitted. Input from and output to nonlocal channels are
not permitted.

All the ways of expressing data can be combined arbitrarily, without restriction. Here we define
howeven as a function whose body is a value-data. It expresses the number of times 2 is a factor
of its argument.

new howeven (|〈n: nat+1. value h: 0,..n:= 0
 ⟦new m: 1,..n+1:= n.
 loop ⟦if even m ⟦h:= h+1. m:= m/2. loop⟧⟧⟧〉|)

ProTem started 1987 May 22 version of 2023 December 14 page 13

A value-variable begins its scope at the left program bracket ⟦ and ends its scope at the
corresponding right program bracket ⟧ (see Scope). Consequently, the value-variable can be any
simple name, even one that has already been defined in the scope that encloses the value-data. The
type and initial value of the value-variable cannot use the value-variable.

Quote and Unquote

The predefined function quote takes any data and produces a text representation of the data.
Roughly speaking, it quotes its argument. For examples, quote 123 = “123” , quote ⊤ = “⊤” ,
quote “abc” = ““abc”” , quote {0, [1; 2]} = “{0,[1;2]}” . The argument is evaluated before quoting;
for examples, quote (2×3) = “6” , quote (0<1) = “⊤” . In a context where x=3 , quote x = “3” and
quote (x×4) = “12”. Function quote does not provide any control over the format of the resulting
text. For real numbers, fine control over the format of the resulting text is provided by the
predefined function realtext .

The predefined function unquote is a kind of inverse of quote . It applies to texts; roughly
speaking, it unquotes its argument. For examples, unquote “123” = 123 , unquote “⊤” = ⊤ ,
unquote ““abc”” = “abc” , unquote “{0, [1; 2]}” = {0, [1; 2]} . The argument is evaluated after
unquoting; for examples, unquote “2×3” = 6 , unquote “0<1” = ⊤ . In a context where x=3 ,
unquote “x” = 3 and unquote “x×4” = 12 . In a context where x is not defined , unquote “x” is not
evaluated. If the argument does not represent a ProTem data expression, the function is not
evaluated.

Whenever a data that is not a text is used in a context that requires a text, the quote function is
applied automatically. For example

! 123
places a number where a text should be. So quote is applied automatically (! quote 123) resulting
in a text (! “123”) as required for output to the screen. If quote has been redefined (see Scope), the
predefined quote is used.

Whenever a text data is used in a context that requires a data that is not a text, the unquote function
is applied automatically. For example,

“123” + 1 = unquote “123” + 1 = 123+1 = 124
If unquote has been redefined (see Scope), the predefined unquote is used.

Scope

A name is defined in these seven ways: by the keyword new , as a named-program, as a named-
data, as a function parameter, as a plan parameter, as a for-index, or as a value-variable. We have
already met function parameters and named-data and value-variables; we shall meet the others
shortly. The scope of a name is the part of a program in which the name is defined. The scope of a
name is limited by program brackets ⟦ ⟧ , except that the scope of a function's parameter is limited
by function brackets 〈 〉 , and the scope of the dataname of a named-data is limited by data brackets
(| |) .

A name defined in a local scope using the keyword new must be new, not already defined since the
most recent opening program bracket ⟦ . Its scope extends from its definition through all following
sequentially composed programs to the corresponding closing program bracket ⟧ . But it may be
covered by a redefinition in an inner scope. Using new x:= 2 and new x:= 3 as example
definitions, and letting A , B , C , D , and E stand for arbitrary program forms (but not new or

ProTem started 1987 May 22 version of 2023 December 14 page 14

old), in
 ⟦A. new x:= 2. B. ⟦C. new x:= 3. D⟧. E⟧

the definition of x as the number 2 is not yet in effect in A , but it is in effect in B , C , and E .
The definition that makes x the number 3 is in effect in D . None of A , B , C , D , or E can
contain a redefinition of x unless it is within further scope limiters ⟦ ⟧ or 〈 〉 or (| |) .

A name defined by new can become undefined by the keyword old , ending its scope early. So in
new x:= 2. A. old x. B

the definition of x is in effect in A but not in B . Within B , the name x has the same meaning (if
any) that it had before the definition new x:= 2 . After old x , the name x is again new and
available for definition. However,

new x:= 2. ⟦old x. A⟧
is not allowed; a scope cannot be ended by old within a subscope.

A scope can be nested inside another scope, which can be nested inside another, and so on. Outside
all scope limiters ⟦ ⟧ and 〈 〉 and (| |) is the persistent scope. A name defined by new in the
persistent scope is called a persistent name. Persistent names name data (documents) and programs
that you want to keep. When you define a new name in the persistent scope, the name must differ
from all names already in the persistent scope. The scope of a persistent name ends only with old .
Its scope does not end with the end of a computing session (see Session), not even by switching off
the power, which should not cut the power instantly, but should first cause the values of any
variables in the persistent scope to be saved in nonvolatile memory. In the persistent scope, there is
a dictionary named predefined that contains the predefined names.

Names must be defined before they are used (except for a Forward Definition). Whenever a name is
used, it is looked up as follows: first, look in the most local scope (innermost ⟦ ⟧ or 〈 〉 or (| |));
then look in the next most local scope; then the next, and so on; when all local scopes have been
searched, look in the persistent scope; finally, look in the predefined dictionary. The first
occurrence found is the one that is used.

Programs

Some programs are concerned with names: defining a name (new), undefining a name (old).
Other programs are variable assignment, input, output, and a variety of ways of combining programs
to form larger programs. All programs, including those that define and undefine names, are executed
in their turn, just like variable assignments and input and output.

Variable Definition

Variable definition has the form
new newname : data := data

The newname becomes a variablename. Here is an example variable definition.
new x: nat:= 5

This defines x to be a variable assignable to any element in nat , and initially assigned to 5 . There
is no such thing as an “uninitialized variable” nor the “undefined value” in ProTem. In a variable
definition, the data after : is called the “type” of the variable, and the data after := is called the
“initial value”. The type can be anything except the empty bunch, and the initial value must be an
element of the type. The type and initial value can depend on previously defined names, including
variables. For example,

new y: 0,..2×x:= x

ProTem started 1987 May 22 version of 2023 December 14 page 15

defines y as a variable whose value can be any natural number from (including) 0 up to
(excluding) twice the current value of x (the value of x at the time this definition is executed), with
initial value equal to the current value of x . But the type and initial value cannot make use of the
variable being defined. ProTem allows the type and initial value to be “static” (known at compile
time), as in the first example (variable x), and it allows the type and initial value to be “dynamic”
(not known until execution time), as in the second example (variable y).

Here are five more examples.
new s: 10*int:= 10*0
new t: text:= “”
new u: (0,..20)*char:= “abcde”
new L: [*nat]:= [0;..10]
new A: [3*[3*bin]]:= [3*[3*⊤]]

In the first example, s is defined as a variable that can be assigned to any string of ten integers, and
is initially assigned to the string of ten zeroes. In the second example, text is a predefined bunch
equal to *char , so t can be assigned to any text, and is initially assigned to the empty text. In the
next example, u is defined as a variable that can be assigned to any text of length less than 20 , and
is initially assigned to the text “abcde” . In the next example, L is defined as a variable that can be
assigned to any list of naturals, and is initially assigned to the first ten naturals. In the last example,
A is defined as a variable that can be assigned to a 3×3 array of binary values, and is initially
assigned to a 3×3 array of ⊤ .

Assignment

A variable can be reassigned by the assignment program. It has the form
variablename := data

Here are five examples using the definitions of the previous subsection.
x:= x+1 `now x = 6
s:= s⊲2⊳8 `now s = 0; 0; 8; 0; 0; 0; 0; 0; 0; 0
u:= u_(0;..3) `now u = “abc”
L:= 3→5 | 5→7 | L `now L = [0; 0; 0; 5; 0; 7; 0; 0; 0; 0]
A:= (1; 2)→⊥ | A `now A = [[⊤; ⊤; ⊤]; [⊤; ⊤; ⊥]; [⊤; ⊤; ⊤]]

The data on the right of := must be an element in the type (evaluated at definition) of the variable
on the left of := . As in the examples, the data on the right of := can make use of the variable on
the left of := .

Constant Definition

Constant definition has the form
new newname := data

The newname becomes a constantname. The data on the right of := cannot make use of the name
on the left of := . The constantname cannot be reassigned. Here are three constant definitions.

new size:= 10.
new piBy2:= pi / 2.
new range:= 0,..size

where pi is a predefined constant name.

A constant may use variables to express its value. For example
new xplus1:= x+1

The current value of variable x is used to evaluate x+1 , and xplus1 expresses that value. Variable

ProTem started 1987 May 22 version of 2023 December 14 page 16

x may later be reassigned to another value, but that does not affect the value of xplus1 . For
example,

new x: nat:= 3. ` x has value 3
new xplus1:= x+1. ` x has value 3 and xplus1 has value 4
x:= 5 ` x has value 5 and xplus1 has value 4

Data Definition

Data definition has the form
new newname (| data |)

The newname becomes a dataname. Data definition gives the data a name, but does not evaluate the
data.

new xplus2 (|x+2|)
makes the value of xplus2 depend on the value of variable x . As x changes value, xplus2
changes value so that xplus2 = x+2 is always ⊤ . In the constant definition of xplus1 earlier, x+1
is evaluated once, at definition time. In the data definition of xplus2 , x+2 is not evaluated at
definition time; it is evaluated every time xplus2 is used in a context that requires its value.

new x: nat:= 3. ` assigns x to 3
new xplus2 (|x+2|). ` does not evaluate x+2
x:= xplus2. ` assigns x to 5
x:= xplus2 ` assigns x to 7

A data definition can depend indirectly on a variable. For example,
new twoxplus4 (|2×xplus2|)

makes twoxplus4 depend indirectly on the value of variable x . In this definition, the value of
xplus2 is not required, so it is not evaluated. If x currently has value 3 , then x:= twoxplus4
assigns x to 10 . Then another x:= twoxplus4 assigns x to 24 .

Data Recursion

In a variable definition, the type and initial value cannot depend on the variable being defined.
new bad: 0,..2×bad:= bad ` illegal

is not allowed due to the two occurrences of bad to the right of the colon. Likewise a constant
definition cannot be recursive.

We have already seen that named-data can be recursive. Data definition also allows recursion. The
next example defines div to be the integer division function for natural numbers.

new div (|〈a: nat. 〈d: nat+1. a<d ⊨ 0 ⫤ even a ⊨ 2 × div (a/2) d ⫤ 1 + div (a–d) d〉〉|)

Here is a function that eats arguments until it is fed argument 0 .
new eat (|〈n: nat. n=0 ⊨ 0 ⫤ eat〉|)

So eat 5 2 0 = 0 , and eat 4 7 3 8 0 = 0 , and eat 1 2 = eat and eat: nat → (0, eat) .

Here is a baseless recursion. If it is evaluated, its evaluation is nonterminating.
new rec (|rec|)

Named-Data versus Data Definition

Since we have data definition, named-data is unnecessary. For example,
new t: tree (|[text], [tree; tree]|):= [“abc”]

ProTem started 1987 May 22 version of 2023 December 14 page 17

defines t to be a tree-valued variable (binary tree, text at the leaves). It is almost equivalent to
new tree (|[text], [tree; tree]|). new t: tree:= [“abc”]. old tree

The difference occurs when tree has already been defined in the current scope; in that case, the
named-data is still all right, but the data definition is not.

In the next example, variable g is assigned to the greatest common divisor of 10 and 15 .
g:= gcd (|〈a: nat+1. 〈b: nat+1. a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|) 10 15

This example is exactly equivalent to
⟦new gcd (|〈a: nat+1. 〈b: nat+1. a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|).
 g:= gcd 10 15⟧

Named-data is a succinct way of recursively defining some data (such as tree and gcd), and using
the data once, immediately (as the type of t , and the assignment of g). However, if you need to
use the data (use tree or gcd) more than once, you must make a data definition.

Constant Definition versus Data Definition

A constant definition evaluates its data once, at definition time, whereas a data definition evaluates
its data each time its value is required. If the data is fully evaluated, there is no difference. For
example, there is no difference between these two definitions:

new five:= 5
new five (|5|)

When there are no variables used to express the value (neither directly nor indirectly), there is no
semantic difference between data definition and constant definition, but there may be an efficiency
difference. Compare these two definitions.

new six:= 5+1
new six (|5+1|)

If the value of six is never required, the data definition (| |) is more efficient. If the value of six is
required once, they are equally efficient. If the value of six is required two or more times, the
constant definition := is more efficient. Here is a more interesting comparison.

new double:= 〈n: 0,..10. 2×n〉
new double (|〈n: 0,..10. 2×n〉|)

The constant definition causes the function to be evaluated by applying it to all its arguments and
storing the results. In effect, the function is evaluated to the list

[0; 2; 4; 6; 8; 10; 12; 14; 16; 18]
Then, when the value of double applied to an argument is required, that argument indexes the list.
The data definition does not evaluate the function. Each time the value of double applied to an
argument is required, the body of the function is evaluated. Which one is more efficient depends on
the size of the domain, the complexity of the result, and the number of times the definition is used.

Sequential Composition

Sequential composition is denoted by a period (point, dot).
program . program

It is an infix connective; in other words, the period comes between and joins programs.

Concurrent Composition

Concurrent composition has the form
program || program

The concurrent composition of programs P , Q , and R is P||Q||R . A variable defined before the

ProTem started 1987 May 22 version of 2023 December 14 page 18

concurrent composition remains a variable in at most one component of the concurrent composition;
in all the other components of the concurrent composition, it becomes a constant.

new a: nat:= 1 || new b: nat:= 2. new c (|a+b|). ⟦a:= 4. A⟧ || ⟦b:= 8. B⟧. C
In the concurrent composition ⟦a:= 4. A⟧ || ⟦b:= 8. B⟧ , variable a can be reassigned in one of the
concurrent programs, but not in both. Likewise variable b can be reassigned in one of the
concurrent programs, but not in both. At the start of A , variable a has value 4 , constant b has
value 2 , and data c has value 6 . At the start of B , constant a has value 1 , variable b has
value 8 , and data c has value 9 . If A does not reassign a , and B does not reassign b , then at
the start of C , variable a has value 4 , variable b has value 8 , and data c has value 12 .

new a: nat:= 1 || a:= 2 `illegal
is not allowed because the use of a does not sequentially follow its definition. Concurrent
programs cannot affect each other through assignments of variables. For co-operation, programs can
communicate with each other on channels (see Channel Definition). A channel can be used for
output in only one component of a concurrent composition. It can be used for input in all
components, reading the same inputs independently.

Program brackets ⟦ ⟧ are needed for a concurrent composition of sequential compositions
⟦A. B⟧ || ⟦C. D ⟧

because concurrent composition comes before sequential composition in the execution order.

In summary: A name defined in one part of a concurrent composition cannot be used in the other
parts, but it can be used in a sequentially following program. A variable defined before a concurrent
composition remains a variable in at most one part of the composition, and is a constant in the other
parts. A channel defined before a concurrent composition can be used for output in at most one part
of the composition, and can be used for input in all parts.

if-Program

An if-program has the form
if data ⟦ program ⟧

The if-program
if b ⟦P⟧

is executed as follows: binary expression b is evaluated; if its value is ⊤ , then program ⟦P⟧ is
executed; if its value is ⊥ , then program ⟦P⟧ is not executed. An if-else-program has the form

if data ⟦ program ⟧ else ⟦ program ⟧
The if-else-program

if b ⟦P⟧ else ⟦Q⟧
is executed as follows: binary expression b is evaluated; if its value is ⊤ , then program ⟦P⟧ is
executed and program ⟦Q⟧ is not executed; if its value is ⊥ , then program ⟦P⟧ is not executed
and program ⟦Q⟧ is executed. The program if b ⟦P⟧ is equivalent to if b ⟦P⟧ else ⟦ok⟧ where ok
is a predefined program whose execution does nothing and takes no time.

case-Program

A case-program has the form
case data ⟦ program ⟧

in which the program is a sequence of cases. For example, in a case-program with three cases,
case n ⟦P⟧ ⟦Q⟧ ⟦R⟧

the programs, called cases, are numbered in order. Case 0 is ⟦P⟧ , case 1 is ⟦Q⟧ , and case 2 is
⟦R⟧ . It is executed as follows: natural expression n is evaluated; then one of the programs is

ProTem started 1987 May 22 version of 2023 December 14 page 19

executed. In the example, if n has value 1 , then just ⟦Q⟧ is executed. If n is equal to or greater
than the number of cases, an error message is printed on channel msg and execution stops. The
example case-program is equivalent to

if n=0 ⟦P⟧ else ⟦if n=1 ⟦Q⟧ else ⟦if n=2 ⟦R⟧ else ⟦!“Error: case index too large.”. stop⟧⟧⟧

Here is another example, also with three cases:
case 2–n
⟦ok⟧ `case 0: all is well, nothing to do
⟦!“warning: don't do it again”⟧ `case 1: warning
⟦!“you're fired”⟧ `case 2: firing

As the example illustrates, it is helpful to put a comment with each case to say the case index.

A case-else-program has the form
case data ⟦ program ⟧ else ⟦ program ⟧

in which the first program is a sequence of cases. A case-else-program with three cases,
case n ⟦P⟧ ⟦Q⟧ ⟦R⟧ else ⟦S⟧

is the same as the case-program, but if n≥3 , then the program ⟦S⟧ after else is executed. The
example case-else-program is equivalent to

if n=0 ⟦P⟧ else ⟦if n=1 ⟦Q⟧ else ⟦if n=2 ⟦R⟧ else ⟦S⟧⟧⟧

for-Program

A for-program has the form
for simplename : data ⟦ program ⟧

The simplename becomes a constantname in the program. Here is a nest of for-programs that
computes the transitive closure of array A: [n*[n*bin]] .

for j: 0;..n ⟦for i: 0;..n ⟦for k: 0;..n ⟦if A i j ∧ A j k ⟦A:= (i;k) → ⊤ | A⟧⟧⟧⟧
The if-program if A i j ∧ A j k ⟦A:= (i;k) → ⊤ | A⟧ can be restated as

A:= (i;k) → (A i k ∨ (A i j ∧ A j k)) | A
if you prefer. The name being defined by for is called a for-index. It is known only within the for-
program, and it is known there as a constant, and so it is not assignable. In the example, each of the
for-indexes j , i , and k takes values 0, 1, 2, and so on up to but excluding n .

For a second example, here is the sieve of Eratosthenes.
new n:= 1000. new prime: n*bin:= 2*⊥; (n–2)*⊤.
for i: 2;..ceil (sqrt n) ⟦if prime_i ⟦for j: i;..ceil (n/i) ⟦prime:= prime⊲i×j⊳⊥⟧⟧⟧

A for-index is “by initial value”, so this example increases x by 1 , not 2 .
for i: x; x ⟦x:= i+1⟧

This next example prints the natural numbers forever.
for n: 0;..∞ ⟦! n; “ ”⟧

After the : we can have any string expression; the for-index stands for each item in the string, in
sequence. We can also have any bunch expression; the for-index stands for each element of the
bunch, concurrently. As an example (note the use of ,.. rather than ;.. as earlier),

for i: 0,..#L ⟦L:= i → 0 | L⟧
makes the items of L be 0 , concurrently. We could also write either of these:

for i: ☐L ⟦L:= i → 0 | L⟧
L:= [#L*0]

ProTem started 1987 May 22 version of 2023 December 14 page 20

The domain of the for-index can also be a bunch of strings, or a string of bunches, and so on, so that
sequential and concurrent execution can be nested within each other. (Note: distribution and
factoring laws are not applied; the structure of the expression is the structure of execution.)

A for-index begins its scope after ⟦ and ends its scope at the corresponding ⟧ . Consequently, the
for-index can be any simple name, even one that has already been defined in the scope that encloses
the for-program. The domain of the for-index cannot use the for-index.

Program Definition

Program definition has the form
new newname ⟦ program ⟧

The newname becomes a programname within the program. Program definition gives a program a
name, but does not execute the program. For example,

new switchends ⟦L:= 0 → L 9 | 9 → L 0 | L⟧
Execution of this definition defines the program name switchends , but does not execute program
⟦L:= 0 → L 9 | 9 → L 0 | L⟧ . After execution of this definition, the name switchends can be used to
call (cause execution of) the program it names. Program definitions can be recursive. Predefined
program names include await , exec , ok , stop , wait .

A fancy name can be used as a specification. For example,
new « xʹ > x » ⟦x:= x+1⟧

The specification « xʹ > x » means the final value of x is greater than its initial value. It is
implemented (refined, implied) by the program ⟦x:= x+1⟧ . A prover is invoked by the ctl v
command (see Verify). If the specification is written within the language that the prover
understands, the prover attempts to prove that the specification is implemented (refined, implied) by
the program. If the program makes use of a specification, the inner specification is used in the outer
proof. For example,

new « xʹ = 0 » ⟦if x≠0 ⟦x:= x–1. « xʹ = 0 »⟧⟧
In the program ⟦if x≠0 ⟦x:= x–1. « xʹ = 0 »⟧⟧ , the specification « xʹ = 0 » means exactly what it
says, rather than the program that it names. Thus the use of specifications makes complicated fixed-
point semantics unnecessary. If the prover fails to understand the specification, or fails to prove the
refinement, it informs the programmer, and treats the specification as just a name. (See the paper
Specified Blocks.)

Named-Program

A named-program has the form
simplename ⟦ program ⟧

The simplename becomes a programname within the program that it names. Although the name is
situated before a ⟦ , it begins its scope after ⟦ and ends its scope at the closing ⟧ . Consequently,
the name can be any simple name, even one that has already been defined in the scope that encloses
the named-program. The name is attached to the program (like a program definition), and the
program is executed (unlike a program definition). One purpose of this naming is to make loops.
Here is a two-dimensional search for x in an n×m array A of integers (that is, A: [n*[m*int]]).

http://www.cs.utoronto.ca/~hehner/SB.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 21

new i: nat:= 0.
tryThisI ⟦if i=n ⟦! x; “ does not occur.”⟧
 else ⟦new j: nat:= 0.

 tryThisJ ⟦if j=m ⟦i:= i+1. tryThisI⟧
 else ⟦if A i j = x ⟦! x; “ occurs at ”; i; “ ”; j⟧

 else ⟦j:= j+1. tryThisJ⟧⟧⟧⟧⟧

The next example is a fast remainder program, assigning natural variable r to the remainder when
natural a is divided by positive natural d , using only addition and subtraction.

r:= a.
outerloop ⟦if r≥d ⟦new dd: nat:= d.

innerloop ⟦r:= r–dd. dd:= dd+dd.
 if r<dd ⟦outerloop⟧ else ⟦innerloop⟧⟧⟧⟧

N ⟦P⟧ is equivalent to ⟦P⟧ with occurrences of N replaced by N ⟦P⟧ . So the fast remainder
example means the same as

r:= a.
⟦if r≥d ⟦new dd: nat:= d.
 ⟦r:= r–dd. dd:= dd+dd.
 if r<dd ⟦outerloop ⟦if r≥d ⟦new dd: nat:= d.

 innerloop ⟦r:= r–dd. dd:= dd+dd.
 if r<dd ⟦outerloop⟧ else ⟦innerloop⟧⟧⟧⟧⟧

 else ⟦innerloop ⟦r:= r–dd. dd:= dd+dd.
 if r<dd ⟦outerloop ⟦if r≥d ⟦new dd: nat:= d.
 innerloop ⟦r:= r–dd. dd:= dd+dd.
 if r<dd ⟦outerloop⟧
 else ⟦innerloop⟧⟧⟧⟧⟧

 else ⟦innerloop⟧⟧⟧⟧⟧
This process can be repeated. Although semantically there are calls, in the previous two examples
they are last actions (tail recursions), so they are implemented as branches (jumps, go to's).

The next example illustrates that named programs provide general recursion, not just tail recursion.
It computes the Fibonacci numbers x:= fib n and y:= fib (n+1) in log n time.

Fib ⟦if n=0 ⟦x:= 0. y:= 1⟧
 else ⟦if odd n ⟦n:= (n–1)/2. Fib. n:= x. x:= x^2 + y^2. y:= 2×n×y + y^2⟧

 else ⟦n:= n/2 – 1. Fib. n:= x. x:= 2×x×y + y^2. y:= n^2 + y^2 + x⟧⟧⟧

As in a program definition, a fancy name can be used as a specification. For example,
« xʹ > x » ⟦x:= x+1⟧

The specification « xʹ > x » is implemented (refined, implied) by the program ⟦x:= x+1⟧ . A prover
is invoked by the ctl v command (see Verify). If the specification is written within the language that
the prover understands, the prover attempts to prove that the specification is implemented (refined,
implied) by the program. If the program makes use of a specification, the inner specification is used
in the outer proof. For example,

« xʹ = 0 » ⟦if x≠0 ⟦x:= x–1. « xʹ = 0 »⟧⟧
Inside the program brackets, the specification « xʹ = 0 » means exactly what it says, rather than the
program that it names. Thus the use of specifications makes complicated fixed-point semantics
unnecessary. If the prover fails to understand the specification, or fails to prove the refinement, it
informs the programmer, and treats the specification as just a name. (See Specified Blocks.)

http://www.cs.utoronto.ca/~hehner/SB.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 22

Suppose a name is defined within a loop. For example, the name a in
infiniteLoop ⟦new a:= “a”. !a. infiniteLoop⟧

Executing this loop prints an infinite sequence of the letter “a” . Replacing the call with the named-
program, it is equivalent to

⟦new a:= “a”. !a. infiniteLoop ⟦new a:= “a”. !a. infiniteLoop⟧⟧
In a general recursion, each call opens a new scope, and each new definition hides but does not
destroy the previous definition. But when the recursive call is the last action performed in the
named-program (a tail recursion), as in this example, the old scope and its definitions cannot be used
again, so the new scope replaces the old one; the scopes and variables do not pile up.

Named-Program versus Program Definition

Let name be a new name (not defined in the local scope), and let program be a program, possibly
using the name name . Then the following three lines are equivalent to each other.

name ⟦program⟧
⟦new name ⟦program⟧. name⟧
new name ⟦program⟧. name. old name

Therefore named-programs are unnecessary. For example
loop ⟦if n>0 ⟦n:= n–1. loop⟧⟧

is equivalent to
⟦new loop ⟦if n>0 ⟦n:= n–1. loop⟧⟧. loop⟧

A named-program is a succinct way of recursively defining a program, and using the program once.
However, if you need to use (call) a program more than once, you must make a program definition.

Output and Input

Each channel is defined to transmit a specific type of value. The output channels screen , printer ,
and mail , and the input channels keys and mail are predefined to transmit text. The input channel
microphone and the output channel speaker are predefined to transmit sound. We can define local
channels to transmit any type of value (see Channel Definition).

Output has the form
channelname ! data

Channel screen accepts text, which is displayed on the screen. The program
screen! “Hi there.”

sends the text “Hi there.” to the screen. Output is buffered so it will be available when screen is
ready to receive it. Texts can be joined and sent together.

screen! “Answer = ”; quote x; nl
where quote is a predefined function that converts to a text, and nl is the new line character, or
next line character, or return character. Function quote can be omitted (see Quote and Unquote).

When the delete (backspace) character is output to the screen or printer , the previous character is
deleted. If there are more delete characters than previous characters, the extra delete characters
are ignored. When the tab character is output, some amount of space is substituted. When the nl
character is output, further characters start on a new line.

Email input and output are made convenient for nonprogrammers by a mail program, but at the level
of ProTem programming, emailing looks like this:

ProTem started 1987 May 22 version of 2023 December 14 page 23

mail! “To: hehner@cs.utoronto.ca”; nl;
 “Hey Rick, have a look at the exec program: ”; nl;
 definition “exec”

The keyboard is a program that runs concurrently with other programs; you do not need to initiate it;
it is already running. It monitors what key combinations are pressed, and for what duration, and
outputs a string of characters (a text) on channel keys . The shift A combination is a single character
“A” . The escape key and the ctl . combination are both the single character named end . The click
button is just a key like any other; click and doubleclick are characters.

Input has two forms: without echo, and with echo. The form without echo is
channelname ? data (: data :) data

The channelname is the input channel. The input channel may come from a keyboard or microphone
or camera, or it may come from a document, or it may be an internal channel (see Channel
Definition). The type of input read is determined by the channel. The input read is the earliest input
on the channel that has not yet been read. If input is not yet available, it is awaited. What comes
after ? is called the pattern. The pattern directs the input. The pattern is in 3 parts. The first part
is called the left context; the middle part between the core brackets (: :) is the part we want, called
the core; and the last part is called the right context. After the input program, we refer to the input
matching the core using the channel name followed by ? . If the available input is shorter than
required by the pattern, execution awaits further input. If the available input is longer than required
by the pattern, the remaining input is future input.

Here is an example. The constant digit is predefined as
new digit:= “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”

Let doc be an input channel that reads a text document. Then
doc? *“ ” (:digit:) “”

reads input from channel doc . First, there may be some spaces *“ ” , and we want to pass over
them. Then there is a digit , and that's what we want. After that, we don't want to read any more
input, so that's the empty string “” . The digit we read can be referred to as doc? . For example,

if doc?=“5” ⟦screen! “You win.”⟧
Here is a further input from channel doc .

doc? “” (:text:) nl
This input reads whatever remains of the current line, up to and including nl (the new line
character). Then doc? refers to the text up to but not including nl .

The space, tab , nl , delete , and end characters may be part of the input; they are just characters
like any others. For example, to read one character and then output a visible character,

keys? “” (:char:) “”. if keys?=“ ” ⟦screen! “⨽⨼ ”⟧
 else ⟦if keys?=tab ⟦screen! “➭”⟧
 else ⟦if keys?=nl ⟦screen! “↩︎”⟧
 else ⟦if keys?=delete ⟦screen! “⇜”⟧
 else ⟦if keys?=end ⟦screen! “■”⟧
 else ⟦screen! keys?⟧⟧⟧⟧⟧

After the input
keys? *(“ ”, tab, nl) (:*digit:) end

the digits can be referred to as keys? . Then we might have the assignment
x:= unquote (keys?) + unquote (keys?)

where unquote is a predefined function that converts from a text to the type required. Function

mailto:hehner@cs.utoronto.ca

ProTem started 1987 May 22 version of 2023 December 14 page 24

unquote can be omitted (see Quote and Unquote), so we may write
x:= keys? + keys?

Both occurrences of keys? refer to the same input, and keys? continues to refer to the same input
until the next time new input is read from channel keys .

The left context is as long as possible. In
keys? *(“ ”, tab, nl) (:text:) end

the left context is *(“ ”, tab, nl) . This consumes spaces, tabs, and new line characters, until the first
character that is none of those. The core is as short as possible while allowing the right context,
which is end , to match. So the core consists of all characters up to but not including the first
occurrence of end . The right context is also as short as possible. So

keys? “” (:text:) *“ ”
just inputs the empty text no matter what input is available.

Pattern numpat is predefined as follows.
new numpat:= (“+”, “–”, “”); digit; *digit; ((“.”; digit; *digit), “”)

To receive a text on channel doc that can be interpreted as a number, possibly preceded by spaces,
ending in a space or comma or new line or end , input

doc? *“ ” (:numpat:) (“ ”, “,”, nl, end)
If the right context (“ ”, “,”, nl, end) were “” , only leading spaces and an optional sign and the first
digit would be read; subsequent digits, a point, and more digits would not be read.

If c is a channel to input text, the program
c? “” (: “y”, “n” :) “”

inputs one character, either “y” or “n” , from channel c . If the first available character on channel
c is “a” , or more generally, if the input on the channel does not fit the pattern, what happens is not
defined. Here are three options.
• The program cannot be executed, so execution ends.
• An error message is sent to channel msg to say that the input is unacceptable, and execution

ends.
• An error message is sent to channel msg to say that the input is unacceptable, and the sender is

given another opportunity to send an input that fits the pattern.
What happens depends on the implementation; it may depend on the channel, and on the number of
attempts. Perhaps the last option is appropriate for channel keys , and the first is appropriate for a
secure channel. Of course, you can read whatever character you are given c? “” (:char:) “” and
decide what happens if it is neither “y” nor “n” .

Input without echo is invisible. It is useful for reading from a stored document. It is useful when
reading a password (see Read Password). It is useful for single-stepping through an execution. But
it is not useful for ordinary keyboard input. It does not allow corrections by deletions and editing;
instead, delete and click are just characters like any others. Input that allows corrections requires a
visible echo, which we introduce next.

Input with echo has the form
channelname ? data (: data :) data ! channelname

What follows ! is the output channel for the echo. Each input item is immediately echoed (output)
on the echo channel. It allows you to use delete and cut/copy/paste to change what you have
entered. The echo shows each character as it is entered, and each deletion and edit as it is made.
When the pattern has been fulfilled, the input is finished. For example,

keys? “” (:text:) end !screen

ProTem started 1987 May 22 version of 2023 December 14 page 25

reads text until end is sent. The input may span several lines, and contain tab and nl (new line)
characters. Characters entered can be deleted (including new line characters), and changes can be
made using cut/copy/paste, until end is sent, fulfilling the pattern. Then the corrected text, not
including end , can be referred to as keys? .

If c is the name of an input channel, then c?? is a binary expression with value ⊤ if there is
written but unread data on the channel, and ⊥ if there is not. For example,

if keys?? ⟦keys? “” (:char:) “” !screen⟧ else ⟦screen! “Are you still there?”⟧
If doc is a channel that reads from a document, doc?? tells whether there is more to be read. Input
from a document channel that does not currently have any written-but-not-yet-read data waits until
data is written to the channel by a concurrent program.

If c is a channel to input text and d is a channel to output text, the program
c? “” (: “y”, “n” :) “” !d

inputs one character, either “y” or “n” , from channel c , and echoes it to channel d . If the first
available character on channel c is “a” , or more generally, if the input on the channel does not fit
the pattern, execution waits for a correction to make the input fit the pattern. Input with echo allows
correction; input without echo does not.

Suppose the input program keys? “” (:text:) “z” !screen is executed. And suppose the input “ab” is
keyed in. And then the input is edited by inserting “z” between “a” and “b” . The left context is
empty, the core is “a” , the right context is “z” , and “b” is future input. (See predefined drain .)

The two programs
in? left (:core:) right !out
in? left (:core:) right. out! in?

usually differ. The first echoes all the input matching left , core , and right , and allows input
deletion and editing until the pattern is fulfilled. The second treats delete and click as ordinary
characters being read, without deletions or editing, and outputs only the input matching core .

We have now seen all of input and output. But there are some abbreviations to make them more
convenient. An output channel name can be omitted, in which case the output channel is screen .
For example,

! “Hello World”
prints Hello World on channel screen . And

! 2+2
prints 4 on channel screen . This program is short for

screen! quote (2+2)
If the output channel is omitted, and the name screen has been redefined, the output channel is the
predefined channel screen .

An input channel name can be omitted, in which case the input channel is keys . For example,
? “” (:text:) end !

reads text from keys (possibly corrected, terminated by end), with echo to screen . The most
recent core input on channel keys can be referred to as just ? . And ?? is a binary expression
saying whether there is written but unread data on channel keys . If the input channel is omitted,
and the name keys has been redefined, the input channel is the predefined channel keys .

The expression unquote (keys?) can be written unquote (?) or keys? or ? . But it cannot be
written unquote keys? because that is parsed as (unquote keys)? . And it cannot be written

ProTem started 1987 May 22 version of 2023 December 14 page 26

unquote ? because the implementation will complain that unquote is not a channel. Similarly for
quote (keys??) . When keys? is shortened to ? and used as a list index or as an argument to a
function or plan, it must be in evaluation brackets (?) . When keys?? is shortened to ?? and used
as an argument to a function or plan, it must be in evaluation brackets (??) .

In input with echo, the pattern can be omitted, in which case the pattern is
*(“ ”, tab, nl) (:text:) end

The shortest input program
?!

is short for
keys? *(“ ”, tab, nl) (:text:) end !screen

and means: from channel keys , skip leading spaces, tabs, and new lines, then read text including
spaces, tabs, and new lines, corrected by any deletions and editing, until the end character is
received. The value of keys? , or just ? , is the core text, not including the leading spaces, tabs, and
new lines, and not including the trailing end . The entire input is echoed, each character, each
deletion, each editing change, on channel screen .

The shortest output program
!?

is short for
screen! keys?

and means: on channel screen , output the core of the most recent input from channel keys .

In summary, output is
outchannel ! data

Input without echo
inchannel ? leftcontext (: core :) rightcontext

reads data according to the pattern, including such characters as delete and click , with no
corrections and no echo. Input with echo

inchannel ? leftcontext (: core :) rightcontext ! echochannel
is correctable by deletion and editing until the pattern is fulfilled. The core input most recently read
on inchannel is referred to as

inchannel ?
The binary expression

inchannel ??
says whether there is written but unread data on inchannel. If the channel name is keys or screen
it can be omitted. In an input with echo, if the pattern is

*(“ ”, tab, nl) (:text:) end
it can be omitted.

Channel Definition

Channel definition has the form
new newname ? data ! data

The newname becomes a channelname. The first data is the type, and the second data is the initial
value. The type and initial value cannot use the name of the channel being defined. The definition

new c? nat !nil
defines c to be a new local channel that transmits values of type nat , and initially there are no
values in the channel. Initially c?=nil because no input has yet been read. Initially c??=⊥ to say
there is no written but unread data in the channel. Channel c can be used for output and input.

ProTem started 1987 May 22 version of 2023 December 14 page 27

The definition
new updown? text !“What goes up ”

creates a channel named updown that transmits text. Initially updown?=“” because no input has
yet been read. Initially updown??=⊤ because there is the written but unread input

“What goes up ”
After the input program

updown? “” (:char:) “”
we have updown?=“W” . Then, after the output program

updown! “must come down.”
the unread input available for reading on channel updown is

“hat goes up must come down.”
Now, after the input program with echo

updown? “” (:char:) “” !updown
we have updown?=“h” , and the unread input available on channel updown is

“at goes up must come down.h”

If we have a text document named report , we can create a channel rpt to read from it like this:
new rpt? text !report

Initially rpt?=“” . If document report is nonempty, then initially rpt??=⊤ .

If channel c is defined to have type T , it holds a string of values of type T , which is a value of
type *T . A string of values can be read together in one pattern, so c? also has type *T . For
example,

new nn? nat !5; 3; 4
defines nn as a channel that transmits natural numbers. Then nn? nil (:2*nat:) nil reads 2 items
from the channel, after which nn? = 5; 3 . If the definition had been

new nn? *nat !5; 3; 4
the result is the same, because **T = *T . Since text = *char , channels updown and rpt could
equally well have type char .

At the beginning of a session (see Session), all persistent channels are redefined (reinitialized).
Before any keyboard input has been keyed in, keys?=“” and keys??=⊥ .

To use a channel for communication between concurrent programs, define the channel before the
start of the concurrent programs. Then one of the concurrent programs can write to the channel, and
all the concurrent programs can read from the channel; they read the same inputs independently. If
a program sequentially follows a concurrent composition, the sequentially following program begins
reading on each channel after all the inputs read by all concurrent programs on that channel. For
example,

new c? nat! nil. A||B. D
On channel c , program D begins reading after the last input read by A or B .

new c? nat! nil. x:= c? `assigns x to nil
new c? nat! nil. c? nil (:nat:) nil `infinite wait for input
new c? nat! nil. c! 7. c? nil (:nat:) nil. x:= c? `assigns x to 7
new c? nat! nil. ⟦c? nil (:nat:) nil. x:= c?⟧ || c! 7 `assigns x to 7
new c? nat! nil. c! 7. c! 8. c? nil (:nat:) nil. x:= c? `assigns x to 7
new c? nat! nil. c! 7. ⟦c? nil (:nat:) nil. x:= c?⟧ || y:= c? `assigns x to 7 and y to nil
new c? nat! nil. c! 7. ⟦c? nil (:nat:) nil. x:= c?⟧ || ⟦c? nat. y:= c?⟧ `assigns x and y to 7

ProTem started 1987 May 22 version of 2023 December 14 page 28

Plan

A plan is a program with a parameter. There are five forms of plan. The first is
plan simplename : data ⟦ program ⟧

The simplename is being defined as a constant parameter within the program. It can be any simple
name, even one that has already been defined in the current scope. Its type (after the :) cannot
make use of the parameter. The scope of the parameter is from ⟦ to ⟧ . For example,

plan y: real ⟦x:= x×y⟧
A plan can be argumented by adjacency in the same way that lists are indexed and functions are
argumented. The argument provides a value for the parameter. For example,

plan y: real ⟦x:= x×y⟧ 3
is the same as

x:= x×3
Commonly, a plan is named

new P ⟦plan y: real ⟦x:= x×y⟧⟧
and then argumented P 3 , but a plan is not required to have a name.

A program with n+1 parameters is a program with 1 parameter whose body is a program with n
parameters. For example, here is a program with two parameters.

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧
Each argument reduces the number of parameters.

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3 4
is equivalent to

plan y: int ⟦z:= 3+y⟧ 4
which is equivalent to

z:= 3+4

A plan can be named (in a program definition or named-program); a plan can be argumented; and a
plan can be the body of a plan. A plan that is not fully argumented cannot be executed. A plan that
has been fully argumented can be used wherever any program can be used. For examples,

plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧. z:= 2 `this is not allowed
plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3. z:= 2 `this is not allowed
plan x: int ⟦plan y: int ⟦z:= x+y ⟧⟧ 3 4. z:= 2 `this is allowed

Here is a named-program to find the maximum value in nonempty list L in log (#L) time. (L is a
variable, and its initial value is destroyed in the process.) We define findmax i j to find the
maximum in the segment of L from (including) index i to (excluding) index j , reporting the result
as L i , and then apply it to 0 (#L) , which makes L 0 the maximum value of the initial list.

findmax ⟦plan i: ☐L ⟦plan j: ☐L+1
 ⟦if j–i≥2 ⟦findmax i (div (i+j) 2) || findmax (div (i+j) 2) j.

 L:= i → L i ∨ L (div (i+j) 2) | L⟧⟧⟧⟧ 0 (#L)

In the previous paragraphs, the parameter is a constant (note the :); it is not assignable. It is “by
initial value”, so

plan i: int ⟦x:= i. y:= i⟧ (x+1)
assigns both x and y to the same value, one more than x 's initial value.

The second form of plan
plan simplename := data ⟦ program ⟧

(note the :=) defines a variable parameter. For example,

ProTem started 1987 May 22 version of 2023 December 14 page 29

plan x:= int ⟦x:= 3⟧
A plan with a variable parameter applies to a variable argument. But it cannot be applied to a
variable appearing in the plan. This restriction is required for reasoning about the plan. This
example plan can be applied to any variable, even one named x , because that x (the argument) is
nonlocal, and is not the local variable x (the parameter) appearing in the plan. But the plan

plan x:= int ⟦x:= 3 || y:= 4⟧
cannot be applied to variable y .

Here is a plan named norm to reduce rational num/denom to lowest terms.
new norm ⟦plan num:= nat+1 ⟦plan denom:= nat+1 ` normalize num/denom
 ⟦new g:= gcd (|〈a: nat+1. 〈b: nat+1. ` greatest common divisor of a and b
 a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|) num denom.

 num:= num/g. denom:= denom/g⟧⟧⟧
 If variables x and y have values 8 and 12 , then after norm x y they have values 2 and 3 .

The main use for variable parameters is probably to affect many files in the same way; for example, a
plan to sort the contents of files.

The next form of plan
plan simplename ! data ⟦ program ⟧

creates a plan with an output channel parameter. For example.
plan c! text ⟦c! “abc”⟧

A plan with a channel parameter cannot be applied to a channel appearing in the plan. This example
plan can be applied to any output channel that receives text, even one named c , because that c (the
argument) is nonlocal, and is not the local channel c (the parameter) appearing in the plan. But

plan c! text ⟦c! “abc” || d! “def”⟧
cannot be applied to channel d . The channel name screen cannot be omitted when used as an
argument for an output channel parameter.

The next form of plan
plan simplename ? data ⟦ program ⟧

creates a plan with an input channel parameter. For example.
plan c? text ⟦c?!d⟧

This plan applies to an input channel that delivers text, but not to a channel appearing in the plan.
plan c? text ⟦c?!d || d?!c⟧

cannot be applied to channel d . The channel name keys cannot be omitted when used as an
argument for an input channel parameter.

The following program pps has three channel parameters. On the first, a , it reads the coefficients
of a rational power series; on the second, b , it reads the coefficients of another rational power
series; on the last, c , it writes the coefficients of the product power series.

new pps ⟦plan a? rat ⟦plan b? rat ⟦plan c! rat
 ⟦ a? nil (:rat:) nil || b? nil (:rat:) nil. c! a?×b?.
 new a0:= a? || new b0:= b? || new d? rat !nil.
 pps a b d
 || ⟦a? rat || b? rat. c! a0×b?+a?×b0.

 loop ⟦a? nil (:rat:) nil || b? nil (:rat:) nil || d? nil (:rat:) nil.
 c! a0×b?+d?+a?×b0. loop⟧⟧⟧⟧⟧⟧

The final form of plan

ProTem started 1987 May 22 version of 2023 December 14 page 30

plan simplename \ ⟦ program ⟧
creates a plan with a dictionary parameter. This plan can be applied to any dictionaryname that does
not appear in the plan.

Dictionary Definition

Dictionaries are the way you organize your programs and data. There are two forms of dictionary
definition. The first form is

new newname \
The newname becomes a dictionaryname. To create a new dictionary named abc , write

new abc\
The newly created dictionary is empty. Now you can define names within this dictionary. For
example,

new abc\x:= 2
defines x in dictionary abc to be the constant 2 . This constant can then be used as abc\x . (It
does not matter whether there are spaces before or after a backslash.) A name being defined in a
dictionary must not already be defined in that dictionary in the current scope. If the current scope is
a local scope, the name becomes undefined at the end of the scope, as usual. Each name in a
dictionary is defined, using the keyword new and a compound name, to be one of the following: a
variable name, a constant name, a data name, a program name, a channel name, a unit name, or a
dictionary name. To define new dictionary def within dictionary abc write

new abc\def\
When a name in a dictionary is defined to be a dictionary, this dictionary also can contain names,
some of which can be defined as dictionaries, and so on. So a dictionary can be a tree structure.
Suppose there is a dictionary named ProTem within which there is a dictionary named grammars
within which there is a text named LL1. Its name is ProTem\grammars\LL1 .

A name within a dictionary can be undefined by old in the same scope where it was defined (see
Name Removal). For example, old abc\x ends the definition of x in dictionary abc . In the scope
where abc was defined, old abc ends the definition of dictionary abc . When a name becomes
undefined, what it named remains in existence, anonymously, as long as something refers to it.
When a dictionary becomes undefined, so do all the names within it. Here is an example.

new stack\.
new stack\s: *nat:= nil.
new stack\push ⟦plan x: nat ⟦stack\s:= stack\s; x⟧⟧.
new stack\pop ⟦stack\s:= stack\s_(0;..↔stack\s–1)⟧.
new stack\top (|stack\s_(↔stack\s–1)|).
old stack\s

Dictionary stack now has three visible names in it: push , pop , and top . Variable s still exists,
but it is hidden.

The second form of dictionary definition is
new newname \ \ dictionaryname

We can create a dictionary named parseStack populated with the same definitions as stack .
new parseStack\\stack

It is equivalent to writing

ProTem started 1987 May 22 version of 2023 December 14 page 31

new parseStack\.
new parseStack\s: *nat:= nil.
new parseStack\push ⟦plan x: nat ⟦parseStack\s:= parseStack\s; x⟧⟧.
new parseStack\pop ⟦parseStack\s:= parseStack\s_(0;..↔parseStack\s–1)⟧.
new parseStack\top (|parseStack\s_(↔parseStack\s–1)|).
old parseStack\s

There is a dictionary in the persistent scope named predefined (see Predefined Names).

Measuring Unit Definition

There are three predefined units of measurement. They are g , representing mass in grams, m ,
representing distance in meters, and s , representing time in seconds. A unit of measurement has all
the properties of an unknown positive finite real number constant. So, for example, we write
10×m/s for the speed 10 meters per second. And we can define

new km:= 1000×m
to make km be a kilometer, and

new h:= 60×60×s
to make h be an hour. So 1×m/s = 3.6×km/h evaluates to ⊤ . To assign a variable to a quantity
with units attached, the variable's type must have compatible units attached. For example,

new speed: real×m/s:= 3.6×km/h
assigns speed to 1×m/s (which could be written m/s×1 or m×1/s or 1/s×m or just m/s). When
the value 5×m/s is converted to text by quote , the result is “5 m/s” without the × sign and
without evaluating the unknown real value m/s . And unquote “5 m/s” = 5×m/s . Similarly for all
units of measurement. One more example: quote (2×3×km/h) = “1.6667 m/s” .

You can define a new unit of measurement, unrelated to the existing units. Measuring unit definition
has the form

new newname #1
The newname becomes a unitname. For example,

new sheet #1
defines a new unit of measurement called the sheet . Now you can define the related units

new quire:= 25×sheet.
new ream:= 20×quire

You can define a variable using the new units.
new order: nat×sheet:= 3×ream

This assigns order to 1500×sheet . Another example is a monetary unit, such as
new dollar #1.
new cent:= dollar%

Forward Definition

Forward definition has the form
new newname

The newname becomes either a dataname or a programname. For example
new mutual

is a notice that a definition of mutual will follow later in the same scope. In a data definition or
program definition, the scope of the name being defined starts with the definition. A forward
definition facilitates mutual recursion by starting the scope of a data name or program name even
before its definition. For example, leaving gaps for missing parts, in

ProTem started 1987 May 22 version of 2023 December 14 page 32

new f:= 3. ⟦new f. new g (| f g |). new f (| f g |). ⟧
the inner f and g are each defined in terms of both of them. Without the forward definition of f
(following ⟦), g would be defined in terms of the earlier constant definition new f:= 3 .

Name Removal

Names defined with the keyword new can become undefined with the keyword old . Name
removal has the form

old oldname
Ironically, by saying old x , the name x becomes available for reuse as a new name. Even though a
name becomes undefined, what it named will remain as long as there is an indirect way to refer to it.
For example, in predefined dictionary rand there are three names next , Int , and Real . They
might be defined as:

new rand\var: 0,..maxint:= 123456789. `will be hidden
new rand\next ⟦rand\var:= mod (rand\var × 5^13) maxint⟧.
new rand\Int (|〈from: int. 〈to: int. floor (from + (to–from)×rand\var/maxint)〉〉|).
new rand\Real (|〈from: real. 〈to: real. from + (to–from)×rand\var/maxint〉〉|).
old rand\var

Variable rand\var is now hidden; its name is undefined, but rand\next , rand\Int , and rand\Real
still use it. And rand\Int 0 10 has the same value each time it is used until rand\Next is called. So

rand\Int 0 10 + rand\Int 0 10 = 2 × rand\Int 0 10
has value ⊤ . Similarly for rand\Real .

Synonym Definition

Synonym definition has the form
new newname oldname

The newname becomes a synonym for the oldname. One use is to shorten all names that are deep
within several dictionaries. For example, if dictionary a contains dictionary b , which contains
dictionary c , which contains dictionary d , which contains variable x , then

new x a\b\c\d\x
shortens the name a\b\c\d\x to just x . The definition

new d a\b\c\d
shortens all names within a\b\c\d , for example, from a\b\c\d\x to d\x .

Another use is to rename something. To rename a to b , write
new b a. old a

The following sequence swaps the names p and q .
new t p. old p. new p q. old q. new q t. old t

Format

Although not part of the ProTem language, here are some suggested formatting (indentation) rules.
The choice of alternative depends on the length of component data and programs.

A. B for x: A ⟦B⟧
or A. or for x: A

B ⟦B⟧
------------------------------------ ------------------------------------

ProTem started 1987 May 22 version of 2023 December 14 page 33

A || B A + B
or A or A

|| B + B
------------------------------------ ------------------------------------

if A ⟦B⟧ else ⟦C⟧ value x: A:= B ⟦C⟧
or if A ⟦B⟧ or value x: A:= B

else ⟦C⟧ ⟦C⟧
or if A ------------------------------------

⟦B⟧ 〈x: A. 〈y: B. C〉〉
else ⟦C⟧ or 〈x: A. 〈y: B.

------------------------------------ C〉〉
plan x: A ⟦B⟧ ------------------------------------

or plan x: A p ⟦A⟧
⟦B⟧ or p

⟦A⟧

More indentation would show the structure better, but it would crowd programs onto the right side of
the page. Consistent indentation improves readability, and is useful redundancy for error checking.
(Python uses indentation as part of the syntax; so in Python, indentation is not redundant and cannot
be used for error checking.)

Commands

There are 11 commands in ProTem. They are not presented in the grammar, and they cannot be part
of a stored program. A command may be given at any time; it does not have to respect the
grammatical structure of a program. Each command is the control key combined with a letter. The
commands are:

ctl p pause or resume execution
ctl a abort execution
ctl v verify program according to a specification
ctl t turn type checking on or off
ctl s stop current session and start new session
ctl u undo current session
ctl e enter or exit editor for saved definitions
ctl d display source or object code for saved definitions
ctl n display names defined in current scope or persistent scope or in dictionary
ctl m attach or modify or retrieve memo to defined name
ctl c generate context comments

Pause

If there is a program being executed, the ctl p command pauses its execution. If there is a paused
program, ctl p resumes its execution.

Abort

Use ctl a to abort execution of the currently executing or paused program.

ProTem started 1987 May 22 version of 2023 December 14 page 34

Verify

The command ctl v starts a dialogue using keys and screen to determine the program, bracketed by
program brackets ⟦ ⟧ and named by a fancy name, for which verification is wanted. The
verification is then attempted. (See Program Definition and Named-Program.)

Type Checking

Type checking means checking, during execution, that every variable assignment is to a value that is
included in the type of the variable. The ctl t command asks if you want type checking turned on or
off. It then stays that way until the next time you use ctl t . Type checking is useful for debugging,
but is redundant in a correct program. At the start of a session (see Session), type checking is on.
After verifying (see Verify), or when we are satisfied that all assignments are always to values
included in their types, we can choose not to check types, resulting in faster execution.

Session

Sessions are defined for security and error recovery. When the computer is turned on, a session
begins. When some idle time passes (how much time is a parameter of the system and may be set to
infinity), a session ends and a new one begins. When the computer is turned off, a session ends. The
ctl s command causes the current session to end and a new session to begin. If there is a currently
executing or paused program, ending the session asks if you want to abort it.

Sessions do not define the lifetime of definitions. A definition in the persistent scope, outside all
program bracket pairs ⟦ ⟧ , lasts from the execution of the definition (new) to the execution of the
corresponding name removal (old). This may be less than a session, or more than a session.
Turning off the computer should not cut the power instantly, but should first cause the values of any
variables in the persistent scope to be saved in nonvolatile memory.

At the start of each session, a programmer must login. This connects the programmer to their
persistent scope. Persistent channels (keys , screen , microphone , speaker , and printer) are
initialized and connected to the session. Type checking is turned on. The data definition session ,
which is dependent on channel keys , is a text consisting of all keystrokes since the start of the
current session. (This is quite practical: an hour of hard work produces only 10 kbytes of
keystrokes.) This text can be saved as a record of work done, or for error recovery (see Undo).

Undo

The command ctl u undoes a session (except for inputs and outputs and session). Implementing it
requires capturing the state at the start of a session. On many computers, returning to the prior state
may be cheap; nonvolatile memory (that does not require power) contains the state as it was at the
start of the current session, and volatile memory (that requires power) contains the current state.
After undo, you can capture the current value of session , let us call it recovery ,

new recovery: text:= session
then reassign recovery , and then execute the result by writing exec recovery . This gives us
perfectly flexible error recovery for the modest cost of a keystroke file.

ProTem started 1987 May 22 version of 2023 December 14 page 35

Edit

The edit command ctl e is used to modify an existing persistent definition. It invokes a dialogue
using keys and screen to determine which definition. It then invokes an editor. In the editor, ctl e
exits the editor, and asks if you want to throw away the old definition and save the new definition. If
you do want to save it, it is compiled. If you want to create a definition using the editor, first create
the definition, for example, new p ⟦ok⟧ , and then invoke the editor to modify it. If you want to
delete a persistent definition, use old .

Display

The command ctl d starts a dialogue using keys and screen to determine the name (simple or
compound) of the persistent definition whose source or object code you want to view.

Names

The command ctl n begins a dialogue using keys and screen to determine whether you want the
names defined in the current scope, the persistent scope, or in a (sub)dictionary. In a (sub)dictionary
you will see only the first-level names, not the names in its subdictionaries.

Memo

Each definition can optionally have a memo attached to it. The memo might explain the purpose or
use of the definition. It is there to be read by a human, not for execution. A memo is similar to a
comment that you would make at the point of definition, but differs in that you can retrieve it
anytime. The command ctl m starts a dialogue using keys and screen to determine which name
(simple or compound), whether you want to attach a new memo, modify an existing memo, or
retrieve an existing memo. For example, you may say that you want to attach the memo

This variable accumulates the sum of the products.
to name x . Asking for the memo attached to predefined name e prints

e:= 2.718281828459045 (approximately) constant The base of the natural logarithms.

Context

The command ctl c starts a dialogue using keys and screen to determine the program, bracketed by
⟦ ⟧ , for which context comments are wanted. The comments are then generated. These comments
say which nonlocal names are used, and in what way they are used. Here is the format.

`input: on these channels
`output: on these channels
`use: the values of these variables, constants, data names, units, and function names
`assign: these variables
`call: these program names and plan names
`refer: to these dictionaries

If there already are comments in this format, they are replaced. For examples of context comments,
see Example Programs. Additionally, a programmer may want to include comments like

`spec: specification
`pre: precondition
`post: postcondition
`inv: invariant

but these are not generated by ctl c .

ProTem started 1987 May 22 version of 2023 December 14 page 36

Predefined Names

The predefined names are defined in dictionary predefined in the persistent scope (see Scope).
Predefined names can be redefined in a local scope. For example, one of the predefined names is the
imaginary number i (a square root of –1). You may also want to define a local variable i . If you
do, you can still refer to the predefined i as predefined\i (unless you have covered the name
predefined with a local definition). If predefined name i is covered by a definition in a scope
outside the local scope where you are working, you can get back the simple name i as the
imaginary number in these three ways:

new i:= predefined\i `constant definition
new i predefined\i `synonym definition
new i:= 0&1 `constant definition

The command ctl n lists the names in the predefined dictionary. The command ctl m gets a
description of a predefined name. The collection of predefined names may change over time.

Each predefined name is one of:
variable at present, there are no predefined variables
constant evaluated; not assignable
data unevaluated; evaluation upon use; not assignable
program unexecuted; execution upon use
channel reinitialized at the start of each session
unit unrelated to other predefined units
dictionary at present, there is one predefined dictionary rand

Some definitions use § (solutions, those) which is not part of ProTem; it is defined in a Practical
Theory of Programming. Here are the predefined names.

abs: com→real data Absolute value. abs x = sqrt (re x ^ 2 + im x ^ 2) .
all = com, char, bin, all, *all, [all] data All ProTem data values.
arc: com → §〈r: real. 0 ≤ r < 2×pi〉 data The angle or arc of a complex number.
arccos: §〈r: real. –1 ≤ r ≤ +1〉 → §〈r: real. 0 ≤ r ≤ pi/2〉 data A trigonometric function.
arcsin: §〈r: real. –1 ≤ r ≤ +1〉 → §〈r: real. 0 ≤ r ≤ pi/2〉 data A trigonometric function.
arctan: real → §〈r: real. 0 < r < pi/2〉 data A trigonometric function.
await program A plan with one constant parameter of type real×s . If the argument represents the

present or a future time, its execution does nothing but takes time until the instant given by
the argument. If the argument represents the present or a past time, its execution does
nothing and takes no time. See time and wait and s .

bin:= ⊤, ⊥ constant The binary values.
bold: text→text data Same text but in bold font.
capital: char constant The English capital letters. See small and letter .
ceil: real→int data r ≤ ceil r < r+1
char data The characters.
charnat: char→nat data A one-to-one function with inverse natchar . The encoding might be

extended ASCII or unicode. Character combinations, for example shift-option-a, also have
numeric encodings.

click: char constant The click character.
com = real&real data The complex numbers.
cos: real → §〈r: real. –1 ≤ r ≤ +1〉 data The trigonometric cosine function.
cosh: com→com data The hyperbolic cosine function.

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP

ProTem started 1987 May 22 version of 2023 December 14 page 37

cursor: nat; nat data A data name whose value is the current cursor position.
definition: text→text data If the argument is the name of a persistent definition, then the result is the

textual definition. For example, if combo is defined as new combo:= “10-20-30” , then
definition “combo” = “combo:= “10-20-30”” . Otherwise the result is the text “undefined” .

delete: char constant The delete or backspace character.
digit:= “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9” constant The decimal digits.
div: real → §〈r: real. r>0〉 → int data div a d is the integer quotient when a is divided by d .

(0 ≤ mod a d < d) ∧ (a = div a d × d + mod a d)
doubleclick: char constant The doubleclick character.
drain program A plan with one input channel parameter. Reads and discards any unread input.
e:= 2.718281828459045 (approximately) constant The base of the natural logarithms.
end: char constant The end character. It has zero width. It is greater than all other characters.
even: int→bin data A function that says whether its argument is even.
exec program A plan with one text parameter. If the argument represents a ProTem program, the

execution is that of the represented program. It “unquotes” its argument. If applied to
“x:= x+1” , the “x” refers to whatever x refers to at the location where exec “x:= x+1”
occurs. If the argument does not represent a ProTem program, execution displays an error
message on msg . To evaluate data represented as text, for example “2+2” , use unquote .

exp: com→com data The exponential function. exp x = e^x .
false:= ⊥ constant A binary value.
find: all→all→nat data If i is an item in string S , then find i S is the index of its first occurrence;

if not, then find i S = ↔S .
fit: int→text→text data If i≥0 then fit i t is a text of length i obtained from t either by chopping

off excess characters from the right end or by extending t with spaces on the right end. If
i≤0 then fit i t is a text of length –i obtained from t either by chopping off excess
characters from the left end or by extending t with spaces on the left end.

floor: real→int data floor r ≤ r < 1 + floor r
g unit A mass of one gram.
i:= 0&1 constant An imaginary number: a square root of –1 .
im: com→real data The imaginary part of a complex number.
infinity:= ∞ constant An infinite number, greater than all other numbers.
int = nat, –nat data The integers.
italic: text→text data Same text but in italic font.
keys? char! “” channel To the program that monitors key presses, it is an output channel; to all

other programs, it is an input channel.
lb: §〈r: real. r>0〉 → real data The binary (base 2) logarithm.
letter:= small, capital constant The English small and capital letters.
ln: §〈r: real. r>0〉 → real data The natural or Napierian (base e) logarithm.
log: §〈r: real. r>0〉 → real data The common (base 10) logarithm.
m unit A distance of one meter.
mail channel A text input and output channel for email.
match: all→all→nat data If pattern occurs within subject , then match pattern subject is the

index of its first occurrence. If not, then match pattern subject = ↔subject .
maxint: int constant The maximum representable integer (machine dependent).
maxreal: real constant The maximum representable real number (machine dependent).
microphone? *sound! silence channel To the microphone, it is an output channel; to all other

programs, it is an input channel.
minint: int constant The minimum representable integer (machine dependent).
mod: real → §〈r: real. r>0〉 → real data mod a d is the remainder when a is divided by d .

(0 ≤ mod a d < d) ∧ (a = div a d × d + mod a d)

ProTem started 1987 May 22 version of 2023 December 14 page 38

movie = *picture data A string of pictures.
msg? text! “” channel A channel for displaying messages from the ProTem implementation.
nat = 0,..∞ data The natural numbers.
natchar: nat→char data A one-to-one function with inverse charnat . The encoding might be

extended ASCII or unicode. Character combinations, for example shift-option-a, also have
numeric encodings.

nil constant The empty string.
nl: char constant The new line or next line or return or enter character.
null constant The empty bunch.
numpat: text constant A text pattern for numbers, useful for reading a number from a text channel.
odd: int→bin data A function that says whether its argument is odd.
ok program A program whose execution does nothing and takes no time.
ord = real, char, bin, all, *ord, [ord] data The ordered type, for which ∧ ∨ < > ≤ ≥ are defined.
pi:= 3.141592653589793 (approximately) constant The ratio of a circle's circumference to its

diameter.
picture = [x*[y*(0,..z)]] data where x is the number of pixels in the horizontal dimension, y is the

number in the vertical dimension, and z is the number of pixel values.
plain: text→text data Same text but not italic, not bold, and not underlined.
point data A function that applies to a list and gives its deep domain (a bunch of strings of indexes).

It is a signal to the implementation that the strings in it will be used only as indexes to the
list. It can therefore be implemented as a memory address (pointer).

pre: char→char constant The character predecessor function. pre “b” = “a” ; pre “ ” = “ ”
printer? text! “” channel To the printer, it is an input channel; to all other programs, it is an output

channel.
ProTem: text constant This document.
quote: all→text data produces a text representation of its argument. The argument is evaluated

before quoting. See unquote and realtext .
rand \ dictionary containing three definitions.

next program Assigns a hidden variable to the next value in a random sequence.
Int: int→int→int data A function that is dependent on a hidden variable, and is

reasonably uniform over the interval from (including) the first argument to
(excluding) the second argument.

Real: real→real→real data A function that is dependent on a hidden variable, and is
reasonably uniform over the interval between the arguments.

rat = int/(nat+1) data The rational numbers.
re: com→real data The real part of a complex number.
real data The real numbers including ∞ and –∞ .
realtext: nat→nat→nat→real→text data Format a real number. realtext d e w r is a text

representing real r with the final digit rounded. d is the number of digits after the decimal
point; if d=0 the point is omitted. e is the number of digits in the exponent; if e>0 the
decimal point will be placed after the first significant digit; if e=0 the ^^ is omitted and the
decimal point will be placed as necessary. w is the total width; if w is greater than
necessary, leading blanks are added; if w is less than sufficient, the text contains blobs.
realtext 4 1 10 pi = “ 3.1416^^0” realtext 2 0 6 (–pi) = “ –3.14”
realtext 0 0 3 5 = “ 5” realtext 0 0 3 (–5) = “ –5” realtext 0 0 2 123 = “• •”
See quote .

round: real→int data r–0.5 ≤ round r < r+0.5
s unit A time of one second.
screen? text! “” channel To the screen, it is an input channel; to all other programs, it is an output

channel.

ProTem started 1987 May 22 version of 2023 December 14 page 39

session: text data The join of all texts from channel keys since the start of a session.
sign: real → (–1, 0, 1) data The sign of a real number.
silence: sound data The silent sound.
sin: real → §〈r: real. –1 ≤ r ≤ +1〉 data The trigonometric sine function.
sinh: com→com data The hyperbolic sine function.
small: char constant The English small letters. See capital and letter .
sort program A plan with one variable parameter of type *ord . Sorts in nondecreasing order.
sound data The sounds.
speaker? *sound! silence channel To the speaker, it is an input channel; to all other programs, it is

an output channel.
sqrt: com→com data The principal square root. 4^(1/2) = 2, –2 but sqrt 4 = 2 .
stop program Its execution does nothing and takes forever so that no computation can follow.
sub: all→nat→nat→all→all data sub s n m t is a string formed from string s by replacing the

substring from index n to index m with string t . The substring being replaced s_(n;..m)
does not have to be the same length as the string t replacing it. If n=m this is insertion. If
t=nil this is deletion. sub s n m t = s_(0;..n); t; s_(m;..↔s)

subst: all→all→all→all data subst s x y is a string formed from string s by replacing all
occurrences of item x with item y .

suc: char→char constant The character successor function. suc “a” = “b” ; suc end = end
tab: char constant The tab character.
tan: real→real data The trigonometric tangent function.
tanh: com→com data The hyperbolic tangent function.
text = *char data The character strings.
texttime: text→(real×s) data If the argument represents a time, possibly preceded by space, tab, and

new line characters, possibly followed by space, tab, and new line characters, the result is the
represented time in seconds since 2000 January 1 at 0:00 UTC (the midnight that begins
2000 January 1 at longitude 0). Times before then are negative. For example,
texttime “1947 September 16 at 14:24:32.5 UTC–5” = –68675727.5×s . Otherwise the result
is –∞×s . See timetext .

time: real×s data A data name whose value depends on a clock. It gives the current time in seconds
since 2000 January 1 at 0:00 UTC (the midnight that begins 2000 January 1 at longitude 0).
Times before then are negative.

timetext: (real×s)→(–12,..12)→text data Given the time in seconds since 2000 January 1 at 0:00
UTC (the midnight that begins 2000 January 1 at longitude 0), and a time zone, the result is a
readable text. Times before then are negative. See texttime . For example,
timetext (–68675727.5×s) (–5) = “1947 September 16 at 14:24:32.5 UTC–5”

trim: text→text data A text formed from the argument by removing all leading and trailing space,
tab, and new line characters.

true:= ⊤ constant A binary value.
underline: text→text data Same text but underlined. Any part of the text that is already underlined

is underlined again.
unquote: text→all data If the argument represents a ProTem data expression, the result is the value

of the represented data. The argument is evaluated after unquoting. If the argument does not
represent a ProTem data expression, the function is not evaluated. See quote .

wait program A plan with one constant parameter of type real×s . If the argument is nonnegative,
its execution does nothing and takes the time given by the argument. If the argument is
nonpositive, its execution does nothing and takes no time. See await and time and s .

ProTem started 1987 May 22 version of 2023 December 14 page 40

Miscellaneous

The ProTem equivalent of enumerated type is shown here.
new brush: “red”, “green”, “blue”:= “red”

or new color:= “red”, “green”, “blue”.
new brush: color:= “red”

The ProTem equivalent of the record type (structure type) is as follows.
new p: “name” → text | “age” → nat := “name” → “Josh” | “age” → 16

or new person:= “name” → text | “age” → nat.
new p: person:= “name” → “Josh” | “age” → 16

The fields of p can be selected by data that evaluates to text, for example
p “name”

is the text “Josh” . The value of p can be changed using a function arrow and selective union.
p:= “name” → “Amanda” | “age” → 2.
p:= “age” → 3 | p

We can even have a whole file (string) of records and join new records onto its end.
new file: *person:= nil.
file:= file; p

When the predefined function point is applied to a list argument, it yields the deep domain of the
list. For example,

point [10; [11; 12]; 13] = 0 , 1;(0, 1) , 2 = 0 , 1;0 , 1;1 , 2
When used as a type or as part of a type, point is unusual; it does not quite obey the language rules.
For example, we can define a linked list G as follows.

new G: [*(“name” → text | “next” → point G)]:= [“name” → “Alice” | “next” → 0].
new current: point G:= 0

Contrary to the rule, the type mentions G , the variable being defined. The occurrences of point G
are the deep indexes of G at all times, not just at the time the definition is executed. The use of
point is a signal to the implementation that its strings of natural numbers will be used only as
indexes into G (and the implementation will check that this is so). Therefore they can be
implemented as memory addresses, giving us the efficiency of pointers. The initial value of G is a
list of length 1 , so initially the only possible value of G 0 “next” is 0 , and the only possible value
of current is 0 . Now suppose G is reassigned as follows:

G:= [“name” → “Bob” | “next” → 1];; G
Then G has length 2 , so G 0 “next” can have value 0 or 1 . Similarly current can have value
0 or 1 , so the assignment

current:= current+1
can now be made, but the assignment current:= current+2 cannot be made at this time. It is
possible that an assignment to G may make the values of G 0 “next” and current illegal, which is
a flaw in this use of point known as a “dangling pointer” or “dangling reference”. This use of point
is unsafe, and that is the price for pointer efficiency.

The previous example, with linked list G , does not show the full generality of point . Here is a
tree-structured example.

new t: tree (|[nil], [tree; nat; tree]|):= [nil].
new p: point t:= nil

If tree t gains some branches, for example,
t:= [[[nil]; 2; [[nil]; 5; [nil]]]; 3; [[nil]; 7; [nil]]]

we can move p down to the left in the tree with the assignment

ProTem started 1987 May 22 version of 2023 December 14 page 41

p:= p; 0
and move it down to the right with the assignment

p:= p; 2
Thus p is a string of indexes indicating a subtree t@p of t . We can replace this subtree with tree
s using the assignment

t:= p → s | t
We can express the information at the node indicated by p as

t@p 1 or t@(p; 1)
and we can replace the information at this node with the integer 6 using the assignment

t:= (p;1) → 6 | t
To move up in the tree, we just remove the final item of p

p:= p_(0;..↔p–1)

The “procedure”, “method”, or “function” of some other programming languages is a combination
of naming, scope, and parameter(s). For example,

new transform ⟦plan magnification: real ⟦plan translation: real
 ⟦x:= magnification×x + translation⟧⟧⟧

Here is a definition of a plan with one parameter
new translate ⟦transform 1⟧

formed by providing one argument to a two-parameter plan. To provide an argument for just the
second parameter is a little more awkward, but not too bad.

new magnify ⟦plan magnification: real ⟦transform magnification 0⟧⟧
We can now obtain a three-times magnification of x in either of these ways:

magnify 3 or transform 3 0

In some other programming languages, the “function” is a combination of naming, scope,
parameter(s), and value-data. For example,

new factorial (|〈n: nat. value f: nat:= 1 ⟦for i: 1;..n+1 ⟦f:= f×i⟧⟧〉|)

Exception handling is provided by | or if or ⊨ ⫤ . For example,
new divide (|〈dividend: com. 〈divisor: com. divisor=0 ⊨ “zero divide” ⫤ dividend/divisor〉〉|)

Then
divide: com → com → (com, “zero divide”)

The selective union operator applies its left side to an argument if that argument is in the stated
domain of its left side; otherwise it applies its right side. Let us define

new weekday:= 〈d: 0,..7. 1≤d≤5〉
Then if i fails to be an integer in the range 0,..7 in the expression

(weekday | all→“domain error”) i
the left side of | “catches” the exception and “throws” it to the right side, where it is “handled”.

Input choice, as in CSP, can be programmed round-robin as follows.
inputchoice ⟦if c?? ⟦c? nil (:numpat:) end. P⟧
 else ⟦if d?? ⟦d? nil (:numpat:) end. Q⟧

 else ⟦inputchoice⟧⟧⟧

In the persistent scope, ProTem functions as an operating system, where programs are executed as
soon as they are entered. Unix directories are dictionaries. Unix files are variables. Unix cp is an
assignment. Unix rm is ProTem's old . Unix mv is a synonym definition followed by old . Unix ls
and man commands are ctl n and ctl m . The effect of Unix pipes is obtained by channel parameters.
For example, suppose trimmer is a plan to trim off leading and following blanks and tabs from lines v v

ProTem started 1987 May 22 version of 2023 December 14 page 42

of text, and enumerate is a plan to number lines.
new trimmer ⟦plan in? text ⟦plan out! text
 ⟦loop ⟦if in?? ⟦in? nil (:text:) nl. out! trim (in?); nl. loop⟧⟧⟧⟧⟧.
new enumerate ⟦plan in? text ⟦plan out! text
 ⟦new n: nat:= 0.

 loop ⟦if in?? ⟦in? nil (:text:) nl. out! n; “ ”; in?; nl. n:= n+1. loop⟧⟧⟧⟧⟧
We can feed the output from trimmer to the input of enumerate by defining a channel for the
purpose. If the original input comes from keys , and the final output goes to screen , then

new pipe? text! “”. trimmer keys pipe. enumerate pipe screen. old pipe
Even better:

new pipe? text! “”. trimmer keys pipe || enumerate pipe screen. old pipe
If enumerate wants input before it is available from trimmer , enumerate waits. If trimmer
sends output before enumerate wants it, it is buffered.

Unix mail is ProTem's mail channel. If you are the creator of the definition of something in the
persistent scope, and you want to send it to someone for them to make changes, then

mail! “To: someone@address.domain”; nl; definition “something”
(see predefined definition). When someone sends back the changed definition, receive it, delete
your old definition, and then redefine it (see predefined exec) by

mail? “” (:text:) end. old something. exec (mail?)

An implementation may provide plans for a variety of languages. For example, it may provide a
plan named Python , with one text parameter, whose execution is that of the Python fragment
represented by the argument. It may provide asm , whose execution is that of the assembly-
language program represented by the argument.

ProTem considers object orientation to be a programming style, rather than a programming-language
style, or collection of language features. Object-oriented programming (as a style of programming)
can be done in ProTem. Data structures, and the functions and procedures that access and update
them, can be defined together in one dictionary. If many “objects” of the same type are wanted, new
dictionaries just like old ones are easily defined using \\ (see parseStack in Dictionary Definition).

To execute a program stored on someone else's computer, just invoke that remote program using its
full address (computername and programname). For efficiency, it might be best to compile that
remote program for your own computer and run it locally. Any nonlocal names (variables, channels,
and so on) refer to entities on the computer where the program is compiled.

I would prefer to use the symbols ↑ and ↓ for maximum and minimum as in unified algebra,
rather than ∨ and ∧ . But ↑ and ↓ are not the tradition for binary disjunction and conjunction,
nor for set union and intersection, and there are no good keyboard substitutes for them. As it is, the
ordering symbols ∨ ∧ < > ≤ ≥ are nicely related.

In ProTem, a text is written with quotation marks. An attractive alternative to quotation marks is
underlining. For example, the text “abc” would instead be written abc . It is a good-looking
syntax, but awkward to key in, so quotation marks could be the keyboard substitute. (The empty text
would be nil , string indexing would not be underscore, and quote and unquote would be renamed
textify and eval .) I have used underlining in ProTem just for quotation marks within a text; for
example, “Just say “no”.” . This would become Just say “no”. , with no exception needed for
quotation marks within a text. In ProTem, if you want an underlined quotation mark within a text,
you have to underline it again. And so on. Thus every character can occur within a text. In the

http://www.cs.utoronto.ca/~hehner/BAUA.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 43

alternative notation, no special rule is needed. Underlining presents a theoretical (but not practical)
limitation: we cannot write a self-reproducing text (try). We can write a self-reproducing text with
quotation marks, repeating the left and right quotation marks as characters within a text. For
example, “Just say ““no””.” . Using this convention, here is a self-reproducing text:

“““_(0;0;(0;..32);31;31;(1;..31))”””_(0;0;(0;..32);31;31;(1;..31))
Perform the indexing to see what you get.

In the Presentation Grammar, the case-program has the form
case data ⟦ program ⟧

with the program form
program ⟧ ⟦ program

to make more cases. Although it is correct, it is not a clear presentation of
case data ⟦ program ⟧ ⟦ program ⟧ ⟦ program ⟧

and so on. A clear presentation requires another nonterminal, as in the LL(1) Grammar and LR(0)
Grammar. My principle is that the Presentation Grammar has only two nonterminals (program and
data), but the case-program stretches that principle rather thin. Furthermore, the program form

program ⟧ ⟦ program
is the only program or data form whose use is confined to a single context, and I am unhappy to have
any program or data form that cannot be used more generally.

There is both a one-tailed if and a two-tailed if in ProTem, but there is no dangling-else problem.

Sounds and pictures are data structures. This part of ProTem is not yet designed. Perhaps a picture
is an element of [x*[y*(0,..z)]] where x is the number of pixels in the horizontal direction, y is the
number of pixels in the vertical direction, and z is the number of pixel values. A picture could
therefore be expressed in the same way as any other two-dimensional array, and one could refer to
the pixel in column 3 and row 4 of picture p as p 3 4 . Perhaps a movie is a string of pictures.
The operations on movies would be those of strings, such as substring and join. To help in the
creation of movies, one of the pixel values should be transparent, and one of the operations on
pictures should be overlaying. Predefined silence is a sound, and predefined sound is all sounds.
Sounds are input on channel microphone ; pictures are input on channel camera . A constant can
be defined as a sound or picture. A variable can be assigned to a sound or picture. Sounds and
pictures can be included in a data structure, and manipulated using the operators on that data
structure. Sounds can be output on channel speaker . Channel screen must be modified so pictures
can be output on channel screen .

Intentionally Omitted Features

Each of the following omitted features would be a small syntactic convenience, and would be easy to
add to the language. But they would make the language larger, and that would be a cost. And they
would move away from the form needed for verification. So they are not included in ProTem.

assertion
assert x≤y means if –(x≤y) ⟦! “assert failure”. stop⟧

name grouping
new x, y: int:= 0 means new x: int:= 0 || new y: int:= 0
old x, y means old x || old y
x, y:= 0 means x:= 0 || y:= 0
〈a, b: nat. a+b〉 means 〈a: nat. 〈b: nat. a+b〉〉
plan a, b: nat ⟦x:= a+b⟧ means plan a: nat ⟦plan b: nat ⟦x:= a+b⟧⟧

ProTem started 1987 May 22 version of 2023 December 14 page 44

item assignment
S_3:= 5 means S:= S⊲3⊳5
L 3:= 5 means L:= 3→5 | L
A 3 4:= 5 means A:= (3;4)→5 | A

loop constructs
while n>0 ⟦n:= n–1⟧ means while ⟦if n>0 ⟦n:= n–1. while⟧⟧
repeat ⟦n:= n–1⟧ n=0 means repeat ⟦n:= n–1. if –(n=0) ⟦repeat⟧⟧
loop ⟦n:= n–1. if n=0 ⟦exit 1⟧. loop ⟦m:= m–1. if m=0 ⟦exit 2⟧ else ⟦exit 1⟧⟧⟧
 means loop ⟦n:= n–1. if –(n=0) ⟦m:= m–1. if –(m=0) ⟦loop⟧⟧⟧

return from named-program
name ⟦some. if n=0 ⟦return name⟧. more⟧
 means name ⟦some. if –(n=0) ⟦more⟧⟧

The assignment L:= 3→5 | L should be compiled the same as L 3:= 5 would be if it were included
in ProTem; the list L should not be copied. The same for string item assignment. In the loop

while ⟦if n>0 ⟦n:= n–1. while⟧⟧
the last-action (tail recursive) call should be compiled as a branch instruction, with no stack activity,
the same as a while-loop would be if it were included. The same for other loop constructs. Omitting
item assignment and looping constructs should not cost execution time or space.

Plans with parameters and arguments of type program
plan simplename ⟦ program ⟧ plan, parameter is program
program program plan, program argument

were considered and rejected due to syntactic and semantic ambiguities.

As a counterpart to the Unix cd command, I considered
open dictionaryname
close dictionaryname

to allow names in that dictionary to be referred to without stating the dictionary. For example, if we
have dictionary abc , and within it names x and y , we refer to these names as abc\x and abc\y .
By saying open abc we can then refer to them as just x and y . But the interaction between open
and scope is complex, we can already refer to names within predefined , and we can shorten names
by synonym definition, so I left out open and close .

The syntax
new abc\\def

defines a new dictionary abc populated with the definitions from existing dictionary def . Perhaps
it should instead add the definitions of existing dictionary def to existing dictionary abc . At
present, there is no way to do that. If I were to make this change, there would still be a way to define
a new dictionary populated with definitions from an existing dictionary:

new abc\. new abc\\def
But I would have to decide how to resolve duplicate definitions. I am guessing that we always want
to populate a new dictionary, not further populate an existing one.

There is no frame construct in ProTem, but ctl c serves a similar purpose. In some languages there is
a module or object construct for the purpose of grouping together related definitions. In ProTem,
dictionaries serve that purpose.

In order to allow sharing of variables in the persistent scope, I created a personal identity type and a
scheme of permits to say who can use and change what. The scheme was more flexible than Unix
chmod, and I was quite pleased with it. But with sharing, all mathematical reasoning is invalid; x=x

ProTem started 1987 May 22 version of 2023 December 14 page 45

might evaluate to ⊥ . And with sharing, locks are required so that assignments do not interfere with
uses, and assignments do not interfere with other assignments. Sharing problems are solved by the
use of channels: anyone can email anything to anyone else; any program can send anything to any
other program on a channel. So, even though it hurts to leave out something I worked hard on,
identities and shared variables are intentionally omitted.

Two binary operators ∆ (nand) and ∇ (nor) are missing. They are not wanted very often, there are
no good keyboard substitutes for them, and they are easily synthesized:

x∆y = –(x∧y) x∇y = –(x∨y)

The empty program, denoted by nothing, whose execution does nothing and takes no time, is easy to
add to ProTem. With it, we can almost always consider the period (.) to be a program terminator,
rather than an infix connective. But there is one context where it causes confusion.

A. || B.
looks like program A (terminated with a period) is in parallel with program B (terminated with a
period). But, according to the order of execution, the empty program is in parallel with B , as in

A. ⟦ || B⟧.
So I have not included the syntactically empty program in ProTem, providing instead the predefined
program ok whose execution does nothing and takes no time (as in aPToP).

I am tempted to omit both
if data ⟦ program ⟧
case data ⟦ program ⟧

and insist that both if and case always have an else , but so far they remain in ProTem.

Implementation Philosophy

Some expressions do not need to be evaluated, and some cannot be evaluated. For examples,
! –3 `prints –3
! [0; 1] 2 `should print [0; 1] 2
! [0; 1] 2 = [0; 1] 2 `should print ⊤
! 4^(1/2) `should print 2, –2
! 1/0 `should print 1/0
! 0/0 `should print 0/0
! 1/0 = 1/0 `should print ⊤
! 〈r: rat. 5〉 (1/0) `should print 5

ProTem does not evaluate the application of the negation operator – to the operand 3 (see Number
Representation); it just prints the operator and operand. Similarly other expressions that cannot be
evaluated should just print the expression. Due to the difficulty of implementation, it is permissible
for an implementation to behave differently.

No programming language has ever been, nor will ever be, implemented entirely. Every
programming language is infinite; every implementation is finite. There is always a program too big
for the implementation. There is a multitude of size limitations: the parse stack might overflow, the
dictionary (symbol table) might be too small, the forward branch fixup list might be exceeded, and
so on. It would be ugly to define a programming language by listing all the size limitations of
programs. And it would be counter-productive because it would exclude implementations that can
accommodate larger programs.

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/NR.pdf
http://www.cs.utoronto.ca/~hehner/NR.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 46

Whenever a program exceeds a size limitation, the implementation should not say “Error: limitation
exceeded.”, because the program is not in error. The implementation should say “Apology: this
implementation is too limited to accommodate your program.”. An “error” message tells a
programmer to correct the error; there is no other option. An “apology” message gives the
programmer 3 options: change the program to live within the limitation; change the implementation
options to increase the limit that was exceeded; take the program to a different implementation.

Natural numbers and integers are usually limited to those that are representable in a specific number
of bits, for example, 32 bits. This is a size limitation, just the same as other size limitations. It is
more complicated and uglier to define arithmetic within finite limitations than to define the naturals
and the integers. And it is counter-productive to do so, because it excludes an implementation with
64-bit arithmetic. As with other implementation limitations, numeric overflow should not get an
“error” message; it should get an “apology” message.

Floating-point numbers and arithmetic should never be offered as a language feature. The
programmer wants rational or real numbers and arithmetic, but may be willing to accept the floating-
point approximation for the sake of efficiency. Floating-point, with a specific number of bits, is an
implementation limitation. Any alternative to floating-point that increases the accuracy without
taking too much time or space should be welcome.

ProTem is a rich programming system, offering many kinds of data and operators on data, and many
ways to structure a computation. Some features may be difficult to implement. And some features
may be of little use to most programmers. It may be a wise decision not to implement some features.
For example, an implementer might decide that in a variable definition, the type must be one of

int rat bin text [n*type]
where n is a natural number and type is any of these types just listed. An implementer may decide
not to implement concurrent execution. No-one can complain that the complete language is not
implemented, since it is impossible to completely implement any language. But ProTem is defined
to allow all type expressions that make sense, and to allow concurrency, so the next implementation
can accommodate programs that previous implementations could not accommodate.

Example Programs

Portation Simulation

new simport ` a program to simulate portation
⟦ `input: keys

`output: screen
`use: ceil m nat nil nl point real s sqrt time
`call: await stop
`refer: rand

` Distance between control boxes is always 1 m.
` Merges do not overlap, so there is at most 1 corresponding box on the merging portway.
` Each divergence has a left branch and a right branch; there is no straight.
` Leading to a divergence, boxes record only one square speed.

` start of definitions

new km:= 1000×m. new h:= 60×60×s. ` kilometer and hour

http://www.cs.utoronto.ca/~hehner/ratno.pdf
http://www.cs.utoronto.ca/~hehner/Portation.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 47

new maxaccel:= 1.5×m/s/s. ` maximum deceleration = –maxaccel
new speedlimit:= 60×km/h. ` speed limit is 60 km/h everywhere
new cushion:= 1×s. ` reaction time for all porters
new impatience:= 10/s. ` acceleration factor
new maxdistance:= ceil (speedlimit^2 / (2×maxaccel)). ` max search distance ahead
new numporters:= 120. new numboxes:= 7480.
new visualDelayTime:= 0.5×s. ` for human viewing

new porter. ` so porter can be referenced before it is defined

new box: [numboxes *((“ahead left”, “ahead right”, “behind left”, “behind right”) → point box
| “beside” → point box
| “above” → (point porter, numporters)
| (“horizontal”, “vertical”) → nat)] ` box position on screen

 := [numboxes * ((“ahead left”, “ahead right”, “behind left”, “behind right”) → 0
| “beside” → 0
| “above” → numporters ` indicates no porter above

 | (“horizontal”, “vertical”) → 0)].

new porter: [numporters * (“below” → point box ` what is beneath
| “arrival time” → (real×s) ` arrival time at this box
| “speed” → (real×m/s))] ` current speed

 := [numporters * (“below” → 0
 | “arrival time” → (0×s)
 | “speed” → (0×m/s))].

new draw ⟦plan b: nat ⟦plan c: “grey”, “blue”, “red” ⟦UNFINISHED⟧⟧⟧. `end of draw
` draws a box at screen position (box b “horizontal”) (box b “vertical”) of color c.
` “grey” means no porter present, “blue” means porter present, “red” means crash

 ` UNFINISHED because graphical output has not yet been designed

` end of definitions, start of initialization

for b: 0;..numboxes
⟦ ! “What box is ahead-left of box ”; b; “? ”. ?!.

box:= (b; “ahead left”) → ? | (?; “behind left”) → b | box.
! “What box is ahead-right of box ”; b; “? ”. ?!.
box:= (b; “ahead right”) → ? | (?; “behind right”) → b | box.
! “What box is beside box ”; b; “? ”. ?!.
box:= (b; “beside”) → ? | box.
! “What are the horizontal and vertical coordinates of box ”; b; “? ”.
?!. box:= (b; “horizontal”) → ? | box.
?!. box:= (b; “vertical”) → ? | box.
draw b “grey”⟧. ` default color; may be changed below

for p: 0;..numporters
⟦ ! “Porter ”; p; “ is over what box? ”. ?!.

porter:= (p; “below”) → ? | porter. box:= (?; “above”) → p | box.
draw (?) “blue”⟧.

ProTem started 1987 May 22 version of 2023 December 14 page 48

` end of initialization, start of simulation

infiniteLoop
⟦ new iterationStartTime:= time. ` the time of the start of each iteration of the infiniteLoop

new p: point porter:= 0. ` p:= the porter that arrived at its current position first
new t: real×s:= ∞×s. ` t is a time, initially an infinite time
for q: 0;..numporters ⟦if porter q “arrival time” < t ⟦t:= porter q “arrival time”. p:= q⟧⟧.
old t.

new b:= porter p “below”. ` the box below porter p
new bb:= box b “beside”. ` the box beside b; if none then bb=b
new boxesToDo: *[point box; nat×m]:= nil.

` queue of boxes to be explored; their distances ahead of porter p
` queue is sorted by increasing distance ahead
` difference between any two distances in the queue is at most 1

` initialize boxesToDo
if bb = b ⟦boxesToDo:= nil⟧
else ⟦if box bb “above” = numporters ⟦boxesToDo:= nil⟧

else ⟦if porter (box bb “above”) “speed” < porter p “speed” ⟦boxesToDo:= nil⟧
else ⟦boxesToDo:= [bb; 0×m]⟧⟧⟧.

boxesToDo:= boxesToDo; [box b “ahead left”; 1×m].
if box b “ahead left” ≠ box b “ahead right” ⟦boxesToDo:= boxesToDo; [box b “ahead right”; 1×m]⟧.
old b. old bb.

new accel: real×m/s/s:= maxaccel. ` acceleration for porter p

` using boxesToDo calculate accel for porter p

nextBox ⟦new b:= (boxesToDo_0) 0. `the box we are looking at
new d:= (boxesToDo_0) 1. `its distance ahead of porter p
boxesToDo:= boxesToDo_(1;..↔boxesToDo).
if d≤maxdistance
⟦new desiredspeed `according to porter pa

 (|〈pa: point porter, numporters.
 pa=numporters ⊨ speedlimit
 ⫤ (sqrt (porter pa “speed”^2 + 2×maxaccel×d

 + (maxaccel×cushion)^2)
 – maxaccel×cushion) ∧ speedlimit〉|).
 accel:= ((((desiredspeed (box b “above”)

 ∧ desiredspeed (porter (box b “beside”) “above”))
 – porter p “speed”)
 × impatience)

 ∨ –maxaccel) ∧ maxaccel.
 if box b “above” = numporters = porter (box b “beside”) “above”
 ⟦ ` add boxes ahead to queue and continue

 boxesToDo:= boxesToDo; [box b “ahead left”; d+1×m].
 if box b “ahead left” ≠ box b “ahead right”
 ⟦boxesToDo:= boxesToDo; [box b “ahead right”; d+1×m]⟧.

ProTem started 1987 May 22 version of 2023 December 14 page 49

 nextBox⟧
else ⟦if ↔boxesToDo > 0 ⟦nextBox⟧⟧⟧⟧.

old boxesToDo.

` using accel, move porter p ahead one box
new b: point box:= porter p “below”.
box:= (b; “porter”) → numporters | box. draw b “grey”.
rand\next. b:= box b (rand\Int 0 2 = 0 ⊨ “ahead left” ⫤ “ahead right”).
if box b “porter” < numporters ⟦draw b “red”. stop⟧. ` crash
porter:= (p; “below”) → b | porter. box:= (b; “above”) → p | box. draw b “blue”.
old b.
new speed:= sqrt (porter p “speed”^2 + 2×accel×m) ∧ speedlimit.
porter:= (p; “arrival time”) → (porter p “arrival time” + 2×m/(porter p “speed” + speed))

 | (p; “speed”) → speed
 | porter.

old speed. old accel. old p. `these olds are not really necessary
await (iterationStartTime+visualDelayTime).
infiniteLoop⟧⟧ `end of simport

Quote Notation Lengths

` program to compare quote notation lengths with numerator/denominator lengths

`output: screen
`use: bin div even nat odd

new shl (|〈n: nat. 〈m: nat. ` shift n left m places; n×2^m
 value r: nat:= n ⟦for i: 0;..m ⟦r:= r×2⟧⟧〉〉|).

new shr (|〈n: nat. 〈m: nat. ` shift n right m places; floor (n×2^–m) or div n (2^m)
 value r: nat:= n ⟦for i: 0;..m ⟦r:= div r 2⟧⟧〉〉|).

new gcd (|〈a: nat+1. 〈b: nat+1. ` greatest common divisor of a and b
 a=b ⊨ a ⫤ a<b ⊨ gcd a (b–a) ⫤ gcd (a–b) b〉〉|).

new norm ⟦plan num:= nat+1 ⟦plan denom:= nat+1 ` normalize num/denom
 ⟦new g:= gcd num denom. num:= num/g. denom:= denom/g⟧⟧⟧.

new count: nat:= 0. ` number of examples
new qlen: nat:= 0. ` total length of quote representations
new rlen: nat:= 0. ` total length of numerator/denominator representations

for length: 1;..15
⟦for string: 0;..(shl 1 length) ` each string of that length
 ⟦for quote: 0;..length ` each quote position (at least one bit to left of quote)
 ⟦if even (shr string (length–1)) ≠ even (shr string (quote–1)) ` roll-normalized
 ⟦if ` repeat-normalized
 value repeatnorm: bin:= ⊤
 ⟦new len: nat:= div (length–quote) 2. ` the length of the possibly repeating part

http://www.cs.utoronto.ca/~hehner/NR.pdf

ProTem started 1987 May 22 version of 2023 December 14 page 50

 trythislen ⟦if len>0 ` 1 ≤ len ≤ (length–quote)/2
 ⟦new extract (|〈i: nat. 〈l: nat. ` index i length l
 shr string i – shl (shr string (i+l)) l 〉〉|).
 new ex:= extract quote len.
 if ` the negative part is a repetition (twice or more) of ex
 value b: bin:= ⊤
 ⟦new i: nat:= quote+len. ` i+len ≤ length
 iloop ⟦new ey:= extract i len.
 if ex=ey ⟦i:= i+len. ` i≤length
 if i+len ≤ length ⟦iloop⟧

 else ⟦b:= ⊥⟧⟧
 else ⟦b:= ⊥⟧⟧⟧
 ⟦repeatnorm:= ⊥⟧ else ⟦len:= len–1. trythislen⟧⟧⟧⟧
 ⟦for point: 0;..length+1 ` each point position (right end, interior, left end)
 ⟦if ` the rightmost bit is 1 or it is to the left of quote or point
 odd string ∨ (quote=0) ∨ (point=0)
 ⟦ ` convert to numerator/denominator
 new num: nat:= shl string (length–quote) – string – shl (shr string quote) length.
 if num<0 ⟦num:= –num⟧.
 new denom: nat:= shl (shl 1 (length–quote) – 1) point.
 norm num denom.
 ` update statistics
 count:= count+1. qlen:= qlen+length.

 rlen:= rlen+1. ` for the sign
 loop ⟦num:= div num 2. rlen:= rlen+1.

 if num>0 ⟦loop⟧⟧.
 loop ⟦denom:= div denom 2. rlen:= rlen+1.

 if denom>0 ⟦loop⟧⟧⟧⟧⟧⟧⟧⟧⟧.
! “In ”; count; “ examples, quote average length = ”;
 qlen/count; “, num/denom average length = ”; rlen/count.

old shl. old shr. old gcd. old norm. old count. old qlen. old rlen

Minimum Redundancy Codes

new MRC ` a program to compute minimum redundancy prefix codes (Huffman codes)
⟦`input: keys
 `output: screen
 `use: end find nat nil nl point real text

 new forest: *[real; tree (|[text], [tree; tree]|)]:= nil. `The data structure is a string of lists.
 `Each list is a pair of real and tree; the real is the frequency of the tree.
 `Each tree is binary with texts at the leaves.

 inputstart
 ⟦! “Enter a frequency, then a colon, then a message, then end , and repeat. ”;
 “To end, just enter end .”; nl.
 readloop
 ⟦?!.
 if ↔? = 0 ` Just end was pressed.

ProTem started 1987 May 22 version of 2023 December 14 page 51

 ⟦if ↔forest = 0 `We have not had any input yet. We need at least one.
 ⟦! “Insufficient input. Try again.”. inputstart⟧.
 new c:= find “:” (?).
 if c = ↔? ⟦! “Bad format: no colon. Try again.”. readloop⟧
 new freq:= ?_(0;..c).
 if freq=–∞ ⟦! “Bad frequency format. Try again.”. readloop⟧.
 new message:= ?_(c+1;..↔?).
 ` find where the new data goes in forest and put it there.
 new i: nat:= 0.
 findloop ⟦if i = ↔forest ∨ (freq ≤ (forest_i)0) ` found where it goes
 ⟦forest:= forest_(0;..i); [freq; [message]]; forest_(i;..↔forest)⟧
 else ⟦i:= i+1. findloop⟧⟧. readloop⟧⟧⟧.

 ` forest is now a nonempty string of pairs, each pair consisting of a frequency and a tree, each
 ` tree is a single leaf, each leaf is a list-text. They are in non-decreasing frequency order.
 ` For example: [3; [“c”]]; [4; [“a”]]; [9; [“f”]]; [12; [“b”]]; [15; [“e”]]; [20; [“d”]]

 new here: nat:= 0. ` A new tree must be moved to position here or later.

 loop ⟦if ↔forest ≥ 2
 ⟦ ` combine the first two trees into a new tree t
 new t:= [(forest_0)0 + (forest_1)0; [(forest_0)1 ; (forest_1)1]].
 ` remove those first two trees from the forest
 forest:= forest_(2;..↔forest).
 ` put tree t into its place in the forest
 innerloop ⟦if here = ↔forest ∨ (t 0 < (forest_here)0) ` we have found where it goes

⟦forest:= forest_(0;..here); t; forest_(here;..↔forest). loop⟧
 else ⟦here:= here+1. innerloop⟧⟧⟧⟧.

 ` forest is now a single pair consisting of the total of all frequencies and a code tree.
 new t:= forest_1. ` the code tree
 ` Walk the tree, depth-first, printing leaves and their codes
 new p: point t:= nil. ` a path within t starting at the root
 new pt: text:= “”. ` same path as p but as a text for printing
 new back ⟦plan p:= *nat ⟦p:= p_(0;..↔p–1)⟧⟧.
 loop ⟦if ~(t p): text ` we are at a leaf

 ⟦! “code: ”; pt; “; message: ”; ~(t p); nl⟧
 else ⟦p:= p;0. pt:= pt;“0”. loop. back p. back pt.
 p:= p;1. pt:= pt;“1”. loop. back p. back pt⟧⟧⟧ `end of MRC

Read Password

` program to read a password, allowing corrections, displaying blobs
`input: keys
`output: screen
`use: char delete end text
new password: text:= “”.
pswd ⟦!“Please enter password followed by end : ”.
 read ⟦? nil (:char:) nil.
 if ?=end ⟦if password=“” ⟦!“Empty password. Try again.”; nl. pswd⟧

ProTem started 1987 May 22 version of 2023 December 14 page 52

 else ⟦!nl⟧⟧
 else ⟦if ?=delete ⟦if password≠“” ⟦password:= password_(0;..↔password–1). !delete⟧⟧

 else ⟦password:= password; ?. !“•”⟧.
 read⟧⟧⟧

Grammars

LL(1) Grammar

In this grammar, for each nonterminal, every production except possibly the last begins with a
different terminal. Director sets are needed to create the parser, but they are not needed for parsing,
and that is a special case of LL(1) that deserves its own name; perhaps LL(1/2). To parse a program,
the parse stack begins with only the program nonterminal on it, and ends empty with no more input.
A name control program is responsible for classifying names. For efficiency, the productions (except
possibly the last) for each nonterminal should be placed in order of frequency. The following
nonterminals can be eliminated by replacing them with their one production: program sequent data
data6 data5 data4 data3 data1. This leaves the grammar with 33–8 = 25 nonterminals.

program sequent moresequents

moresequents . program
empty

sequent phrase parallelphrases

parallelphrases || sequent
empty

phrase new simplename afternewname
old simplename compounder
⟦ program ⟧
if data ⟦ program ⟧ elsepart
case data ⟦ program ⟧ morecases elsepart
for simplename : data ⟦ program ⟧
plan simplename parameterkind ⟦ program ⟧ arguments
! data
? inputafterq
simplename aftersimplename

afternewname : data := data
(| data |)
:= data
? data ! data
⟦ program ⟧
\ afterbackslash
#1
simplename compounder
empty

afterbackslash simplename afternewname

ProTem started 1987 May 22 version of 2023 December 14 page 53

\ simplename compounder
empty

compounder \ simplename compounder
empty

elsepart else ⟦ program ⟧
empty

morecases ⟦ program ⟧ morecases
empty

parameterkind : data
:= data
! data
? data
\

aftersimplename ⟦ program ⟧
compounder aftername

aftername := data
! data
? inputafterq
arguments

inputafterq ! echo
data (: data :) data afterpattern

afterpattern ! echo
empty

echo simplename compounder
empty

arguments number arguments
∞ arguments
text arguments
⊤ arguments
⊥ arguments
value simplename : data := data ⟦ program ⟧ arguments
{ data } arguments
[data] arguments
(data) arguments
〈 simplename : data . data 〉 arguments
simplename specificand arguments
empty

data data6 moredata

ProTem started 1987 May 22 version of 2023 December 14 page 54

moredata ⊨ data ⫤ data
empty

data6 data5 moredata6

moredata6 = data5 moredata6
≠ data5 moredata6
< data5 moredata6
> data5 moredata6
≤ data5 moredata6
≥ data5 moredata6
: data5 moredata6
:: data5 moredata6
∈ data5 moredata6
empty

data5 data4 moredata5

moredata5 , data4 moredata5
,.. data4 moredata5
| data4 moredata5
⊲ data ⊳data4 moredata5
empty

data4 data3 moredata4

moredata4 + data3 moredata4
– data3 moredata4
;; data3 moredata4
; data3 moredata4
;.. data3 moredata4
‘ data3 moredata4
empty

data3 data2 moredata3

moredata3 × data2 moredata3
/ data2 moredata3
∧ data2 moredata3
∨ data2 moredata3
empty

data2 # data2
– data2
~ data2
+ data2
☐ data2
 data2

* data2
¢ data2

ProTem started 1987 May 22 version of 2023 December 14 page 55

$ data2
↔ data2
data1 moredata2

moredata2 * data2 moredata2
→ data2 moredata2
^ data2 moredata2
^^ data2 moredata2
empty

data1 data0 moredata1

moredata1 % moredata1
? moredata1
?? moredata1
_ data0 moredata1
@ data0 moredata1
& data0 moredata1
arguments

data0 number
∞
text
⊤
⊥
?
??
value simplename : data := data ⟦ program ⟧
{ data }
[data]
(data)
〈 simplename : data . data 〉
simplename specificand

specificand (| data |)
compounder

LR(0) Grammar

The following grammar has no reduce-reduce choices and no shift-reduce choices. It has shift-shift
choices. Such a grammar is commonly called LR(0), but it should not be, because a shift action
pushes an input symbol onto the parse stack, and therefore a shift action depends on the input
symbol. It is a special case of LR(1) that deserves its own name, but not LR(0); perhaps LR(1/2).
To parse a program, the parse stack begins empty, and ends with only the program nonterminal on it
and no more input. A name control program is responsible for classifying names.

program sequent
program . sequent

sequent phrase

ProTem started 1987 May 22 version of 2023 December 14 page 56

sequent || phrase

phrase new name : data := data
new name := data
new name (| data |)
new name ⟦ program ⟧
new name ? data ! data
new name #1
new name \
new name \ \ name
new name name
new name
old name
name := data
name ! data
! data
name ? data (: data :) data ! name
? data (: data :) data ! name
name ? ! name
name ? data (: data :) data !
? ! name
? data (: data :) data !
name ? !
? !
name ? data (: data :) data
? data (: data :) data
simplename ⟦ program ⟧
if data ⟦ program ⟧
if data ⟦ program ⟧ else ⟦ program ⟧
case data cases
case data cases else ⟦ program ⟧
for simplename : data ⟦ program ⟧
⟦ program ⟧
plan

cases ⟦ program ⟧
cases ⟦ program ⟧

plan plan simplename : data ⟦ program ⟧
plan simplename := data ⟦ program ⟧
plan simplename ? data ⟦ program ⟧
plan simplename ! data ⟦ program ⟧
plan simplename \ ⟦ program ⟧
plan data0
name

data data6 ⊨ data ⫤ data
data6

data6 data6 = data5

ProTem started 1987 May 22 version of 2023 December 14 page 57

data6 ≠ data5
data6 < data5
data6 > data5
data6 ≤ data5
data6 ≥ data5
data6 : data5
data6 :: data5
data6 ∈ data5
data5

data5 data5 , data4
data5 ,.. data4
data5 | data4
data5 ⊲ data ⊳ data4
data4

data4 data4 ; data3
data4 ;.. data3
data4 ;; data3
data4 ‘ data3
data4 + data3
data4 – data3
data3

data3 data3 × data2
data3 / data2
data3 ∧ data2
data3 ∨ data2
data2

data2 + data2
– data2
¢ data2
$ data2
↔ data2
data2
~ data2
☐ data2
 data2

* data2
data1 * data2
data1 → data2
data1 ^ data2
data1 ^^ data2
data1

data1 data1 data0
data1 _ data0
data1 @ data0
data1 %

ProTem started 1987 May 22 version of 2023 December 14 page 58

data1 & data0
name ?
name ??
?
??
data0

data0 number
∞
text
⊤
⊥
[data]
{ data }
(data)
〈 simplename : data . data 〉
value simplename : data := data ⟦ program ⟧
name
simplename (| data |)

name simplename
name \ simplename

Acknowledgements

The first public mention of ProTem was
E.C.R.Hehner, T.S.Norvell: “ProTem: a Programming System”, University of Toronto,
Computer Systems Research Group, technical report CSRG213, 1988 September

On 1991 April 16, Eric Hehner gave a talk at the University of Waterloo titled “the ProTem
Programming System”.

Theo Norvell wrote an MSc thesis in 1988 titled “Expressions, Types, and Data Structures in
ProTem”. Jim Horning suggested error recovery using the session file. Hugh Redelmeier acted as
design consultant and critic in 1990. Brian Parkinson found a bug in the implementation in 1990,
and he wrote an MSc thesis in 1991 titled “Automated Theorem Proving in the ProTem
Programming Language”. The design of ProTem has been improved since then, and the old
implementation is now out-of-date. A new implementation is partly written.

http://www.cs.utoronto.ca/~hehner/PTI.pdf

