Question and Answers

What is the meaning of a procedure? This question is not so simple to answer, and its answer has far-reaching consequences throughout computer science. By “procedure” I mean any named, callable piece of program; depending on the programming language, it may be a procedure, or function, or method, or something else. To illustrate my points, I will use the Pascal programming language, but the points I make apply to any modern programming language.

Here is a little piece of Pascal programming.

```
function binexp (n: integer): integer;  { for 0\leq n<31 , binexp (n) = 2^n }

procedure toobig;  { if 2^{20} > 20000 , print 'too big' ; otherwise do nothing }
begin
   if binexp (20) > 20000 then print ('too big')
end
```

Only the header and specification of function \texttt{binexp} appear; the body is missing. But \texttt{toobig} is there in its entirety. Now I ask: Is \texttt{toobig} a Pascal procedure? And I offer two answers.

Program Answer: No. We cannot compile and execute \texttt{toobig} until we have the body of \texttt{binexp}, or at least a link to the body of \texttt{binexp}. \texttt{toobig} is not a procedure until it can be compiled and executed. (We may not have the body of \texttt{print} either, and it may not even be written in Pascal, but the compiler does have a link to it, so it can be executed.) Since \texttt{toobig} calls \texttt{binexp}, whose body is missing, we cannot say what is the meaning of \texttt{toobig}. The specification of \texttt{binexp}, which is just a comment, is helpful documentation expressing the intention of the programmer, but intentions are irrelevant. We need the body of \texttt{binexp} before it is a Pascal function, and when we have the body of \texttt{binexp}, then \texttt{toobig} will be a Pascal procedure.

Specification Answer: Yes. \texttt{toobig} conforms to the Pascal syntax for procedures. It type-checks correctly. To determine whether \texttt{binexp} is being called correctly within \texttt{toobig}, we need to know the number and types of its parameters, and the type of result returned; this information is found in the header for \texttt{binexp}. To determine whether \texttt{print} is being called correctly, we need to know about its parameters, and this information is found in the list of built-in functions and procedures. To understand \texttt{toobig}, to reason about it, to know what its execution will be, we need to know what the result of \texttt{binexp (20)} will be, and what effect \texttt{print ('too big')} will have. The result of \texttt{binexp (20)} is specified in the comment, and the effect of \texttt{print ('too big')} is specified in the list of built-in functions and procedures. We do not have the body of \texttt{binexp}, and we probably cannot look at the body of \texttt{print}, but we do not need them for the purpose of understanding \texttt{toobig}. Even if we could look at the bodies of \texttt{binexp} and \texttt{print}, we should not use them for understanding and reasoning about \texttt{toobig}. That’s an important programming principle; it allows programmers to work on different parts of a program independently. It enables a programmer to call functions and procedures written by
other people, knowing only the specification, not the implementation. There are many ways that binary exponentiation can be computed, but our understanding of `toobig` does not depend on which way is chosen. Likewise for `print`. This important principle also enables a programmer to change the implementation of a function or procedure, such as `binexp` and `print`, but still satisfying the specification, without knowing where and why the function or procedure is being called. If there is an error in implementing `binexp` or `print`, that error should not affect the understanding of and reasoning about `toobig`. So, even without the bodies of `binexp` and `print`, `toobig` is a procedure.

The semantics community has decided on the Program Answer. For them, the meaning of a function or procedure is its body, not its specification. They do not assign a meaning to `toobig` until the bodies of `binexp` and `print` are provided.

Most of the verification community has decided on the Program Answer. To verify a program that contains a call, they insist on seeing the body of the procedure/function being called. They do not verify that 'too big' is printed until the bodies of `binexp` and `print` are provided.

I would like the Software Engineering community to embrace the Specification Answer. That answer scales up to large software; the Program Answer doesn't. The Specification Answer allows us to isolate an error within a procedure (or other unit of program); the Program Answer doesn't. The Specification Answer insists on having specifications, which are the very best form of documentation; the Program Answer doesn't.

Halting Problem

The Halting Problem is widely considered to be a foundational result in computer science. Here is a modern presentation of it. We have the header and specification of function `halts`, but not its body. Then we have procedure `twist` in its entirety, and `twist` calls `halts`. This is exactly the situation we had with function `binexp` and procedure `toobig`. Usually, `halts` gives two possible answers: 'yes' or 'no'; for the purpose of this essay, I have added a third: 'not applicable'.

```plaintext
function halts (p, i: string): string;
{ return 'yes' if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i; }
{ return 'no' if p represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i; }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }

procedure twist (s: string); { execution terminates if and only if halts (s, s) ≠ 'yes' }
begin
  if halts (s, s) = 'yes' then twist (s)
end
```

We assume there is a dictionary of function and procedure definitions that is accessible to `halts`, so that the call `halts ('twist', 'twist')` allows `halts` to look up 'twist', and subsequently 'halts', in the dictionary, and retrieve their texts for analysis. Here is a standard proof, appearing in many textbooks, that `halts` is incomputable.

Assume the body of function `halts` has been written according to its specification. Does execution of `twist ('twist')` terminate? If it terminates, then `halts ('twist', 'twist')` returns 'yes' according to its specification, and so we see from the body of `twist` that execution of `twist ('twist')` does not terminate. If it does not terminate, then `halts ('twist', 'twist')` returns 'no', and so execution of `twist ('twist')` terminates. This is a contradiction.
(inconsistency). Therefore the body of function \(\text{halts} \) cannot have been written according to its specification; \(\text{halts} \) is incomputable.

This “textbook proof” begins with the computability assumption: that the body of \(\text{halts} \) can be written, and has been written. The assumption is necessary for advocates of the Program Answer to say that \(\text{twist} \) is a Pascal procedure, and so rule out ‘not applicable’ as the result of \(\text{halts} (\text{‘twist’}, \text{‘twist’}) \). If we suppose the result is ‘yes’, then we see from the body of \(\text{twist} \) that execution of \(\text{twist} (\text{‘twist’}) \) is nonterminating, so the result should be ‘no’. If we suppose the result is ‘no’, then we see from the body of \(\text{twist} \) that execution of \(\text{twist} (\text{‘twist’}) \) is terminating, so the result should be ‘yes’. Thus all three results are eliminated, we have an inconsistency, and advocates of the Program Answer blame the computability assumption for the inconsistency.

Advocates of the Program Answer must begin by assuming the existence of the body of \(\text{halts} \), but since the body is unavailable, they are compelled to base their reasoning on the specification of \(\text{halts} \) as advocated in the Specification Answer.

Advocates of the Specification Answer do not need the computability assumption. According to them, \(\text{twist} \) is a Pascal procedure even though the body of \(\text{halts} \) has not been written. What does the specification of \(\text{halts} \) say the result of \(\text{halts} (\text{‘twist’}, \text{‘twist’}) \) should be? The Specification Answer eliminates ‘not applicable’. As before, if we suppose the result is ‘yes’, then we see from the body of \(\text{twist} \) that execution of \(\text{twist} (\text{‘twist’}) \) is nonterminating, so the result should be ‘no’; if we suppose the result is ‘no’, then we see from the body of \(\text{twist} \) that execution of \(\text{twist} (\text{‘twist’}) \) is terminating, so the result should be ‘yes’. Thus all three results are eliminated. But this time there is no computability assumption to blame. This time, the conclusion is that the body of \(\text{halts} \) cannot be written due to inconsistency of its specification.

Both advocates of the Program Answer and advocates of the Specification Answer conclude that the body of \(\text{halts} \) cannot be written, but for different reasons. According to advocates of the Program Answer, \(\text{halts} \) is incomputable, which means that it has a consistent specification that cannot be implemented in a Turing-Machine-equivalent programming language like Pascal. According to advocates of the Specification Answer, \(\text{halts} \) has an inconsistent specification, and the question of computability does not arise.

Simplified Halting Problem

The distinction between these two positions can be seen better by trimming away some irrelevant parts of the argument. The second parameter of \(\text{halts} \) and the parameter of \(\text{twist} \) play no role in the “textbook proof” of incomputability; any string value could be supplied, or the parameter could be eliminated, without changing the “textbook proof”. The first parameter of \(\text{halts} \) allows \(\text{halts} \) to be applied to any string, but there is only one string we apply it to in the “textbook proof”; so we can also eliminate it by redefining \(\text{halts} \) to apply specifically to ‘\text{‘twist’}’. Here is the result.

```pascal
function \text{halts}: \text{string};
  \{ return ‘yes’ if \text{twist} is a Pascal procedure whose execution terminates; \}
  \{ return ‘no’ if \text{twist} is a Pascal procedure whose execution does not terminate; \}
  \{ return ‘not applicable’ if \text{twist} is not a Pascal procedure \}
```
procedure twist; { execution terminates if and only if $halts \neq 'yes'$ }
begin
 if $halts = 'yes'$ then twist
end

The “textbook proof” that $halts$ is incomputable is unchanged. Assume the body of function $halts$ has been written according to its specification. Does execution of $twist$ terminate? If it terminates, then $halts$ returns 'yes' according to its specification, and so we see from the body of $twist$ that execution of $twist$ does not terminate. If it does not terminate, then $halts$ returns 'no', and so execution of $twist$ terminates. This is a contradiction (inconsistency). Therefore the body of function $halts$ cannot have been written according to its specification; $halts$ is incomputable.

Function $halts$ is now a constant, not depending on the value of any parameter or variable. There is no programming difficulty in completing the body of $halts$. It is one of three simple statements: either $begin halts:= 'yes' end$ or $begin halts:= 'no' end$ or $begin halts:= 'not applicable' end$. The problem is to decide which of those three it is. If the body of $halts$ is $begin halts:= 'yes' end$, we see from the body of $twist$ that it should be $begin halts:= 'no' end$. If the body of $halts$ is $begin halts:= 'no' end$, we see from the body of $twist$ that it should be $begin halts:= 'yes' end$. If the body of $halts$ is $begin halts:= 'not applicable' end$, advocates of both the Program Answer and the Specification Answer agree that $twist$ is a Pascal procedure, so again that's the wrong way to complete the body of $halts$. The specification of $halts$ is clearly inconsistent; it is not possible to conclude that $halts$ is well-defined and incomputable. The two parameters of $halts$ served only to complicate and obscure.

Printing Problems

The “textbook proof” that halting is incomputable does not prove incomputability; it proves that the specification of $halts$ is inconsistent. But it really has nothing to do with halting; any property of programs can be treated the same way. Here is an example.

function $WhatTwistPrints$: string;
{ return 'yes' if $twist$ is a Pascal procedure whose execution prints 'yes'; }
{ return 'no' if $twist$ is a Pascal procedure whose execution does not print 'yes'; }
{ return 'not applicable' if $twist$ is not a Pascal procedure }

procedure $twist$; { if $WhatTwistPrints = 'yes'$ then print 'no'; otherwise print 'yes' }
begin
 if $WhatTwistPrints = 'yes'$ then print ('no') else print ('yes')
end

Here is the “textbook proof” of incomputability, adapted to function $WhatTwistPrints$.

Assume the body of function $WhatTwistPrints$ has been written according to its specification. Does execution of $twist$ print 'yes' or 'no'? If it prints 'yes', then $WhatTwistPrints$ returns 'yes' according to its specification, and so we see from the body of $twist$ that execution of $twist$ prints 'no'. If it prints 'no', then $WhatTwistPrints$ returns 'no' according to its specification, and so we see from the body of $twist$ that execution of $twist$ prints 'yes'. This is a contradiction (inconsistency). Therefore the body of function $WhatTwistPrints$ cannot have been written according to its specification; $WhatTwistPrints$ is incomputable.

The body of function $WhatTwistPrints$ is one of $begin WhatTwistPrints:= 'yes' end$ or $begin WhatTwistPrints:= 'no' end$ or $begin WhatTwistPrints:= 'not applicable' end$ so we
cannot call \texttt{WhatTwistPrints} an incomputable function. But we can rule out all three possibilities, so the specification of \texttt{WhatTwistPrints} is inconsistent. No matter how simple and clear the specification may seem to be, it refers to itself (indirectly, by referring to \texttt{twist}, which calls \texttt{WhatTwistPrints}) in a self-contradictory manner. That's exactly what the \texttt{halts} specification does: it refers to itself (indirectly by saying that \texttt{halts} applies to all procedures including \texttt{twist}, which calls \texttt{halts}) in a self-contradictory manner.

The following example is similar to the previous example.

\begin{verbatim}
function WhatStraightPrints: string;
{ return 'yes' if \textit{straight} is a Pascal procedure whose execution prints 'yes' ; }
{ return 'no' if \textit{straight} is a Pascal procedure whose execution does not print 'yes' ; }
{ return 'not applicable' if \textit{straight} is not a Pascal procedure }

procedure straight; { if WhatStraightPrints = 'yes' then print 'yes' ; otherwise print 'no' }
begin
 if WhatStraightPrints = 'yes' then print ('yes') else print ('no')
end
\end{verbatim}

To advocates of the Program Answer, \textit{straight} is not a Pascal procedure because the body of \texttt{WhatStraightPrints} has not been written. Therefore \texttt{WhatStraightPrints} should return 'not applicable', and its body is easily written: begin \texttt{WhatStraightPrints}:= 'not applicable' end. As soon as it is written, it is wrong. Advocates of the Specification Answer do not have that problem, but they have a different problem: it is equally correct for \texttt{WhatStraightPrints} to return 'yes' or to return 'no'.

The halting function \texttt{halts} has a similar dilemma when applied to

\begin{verbatim}
procedure straight (s: string); { execution terminates if and only if \textit{halts (s, s)} = 'yes' }
begin
 if \texttt{halts (s, s)} \texttt{not}='yes' then straight (s)
end
\end{verbatim}

We can say, without inconsistency, that \texttt{halts ('straight', 'straight')} is 'yes', and we can say, without inconsistency, that \texttt{halts ('straight', 'straight')} is 'no'.

\textbf{Conclusion}

The question “What is the meaning of a procedure?” has at least two defensible answers. If we adopt the answer that a procedure must be executable, then the “textbook proof” of the incomputability of halting cannot be made. That is because the assumption that \texttt{halts} is computable and has been programmed does not give us the program; so we have no meaning for \texttt{halts}, and cannot say whether execution of \texttt{twist} terminates. On the other hand, if we adopt the answer that we have a procedure when we know its intention, and know its execution from the specifications of the functions and procedures that it calls, then the specification of \texttt{halts} is inconsistent. Either way, the “textbook proof” does not show us a (consistently specified) mathematical function that is incomputable.